首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Device‐to‐device (D2D) communication is a viable solution proposed by the Third Generation Partnership Project (3GPP) to handle the enormous number of devices and expected data explosion in 5G. It is competent in enhancing the system performances such as increased data rate, reduced delay, and less power consumption while maintaining a low load on the base station (BS). In this paper, channel assignment and power control scheme is proposed for underlay D2D system where one cellular channel is allowed to be shared among multiple D2D pairs. This will lead to enhanced spectral efficiency on the cost of additional interferences introduced among the D2D and cellular users (CUs). Our aim is to maximize the D2D throughput without degrading the performance of existing CU that is sharing the channel with D2D. This is achieved by maintaining a threshold signal‐to‐interference‐plus‐noise ratio (SINR) for each CU. A centralized channel assignment algorithm based on the well‐known two‐sided preference Gale‐Shapley algorithm is proposed, named as RAbaGS‐HR. Further, suboptimal distributed power control (DPC) algorithms are proposed for both uplink and downlink D2D. The novelty of the work lies in the facts that a channel is shared among multiple D2D users and the optimal power is calculated for all the users sharing the same channel under the full consideration of all kinds of interferences unlike most of the existing work that either assumed the fixed CU power or ignored the interferences among the D2D users. Numerical results show the efficacy of the proposed algorithms in terms of significant gain in throughput with a very low computational cost. In addition to this, the energy efficiency (EE) is also analyzed for different D2D user density, with respect to average circuit power consumption and D2D maximum transmit power.  相似文献   

2.
Using full‐duplex relaying in device‐to‐device (D2D) communication, spectrum efficiency can be further improved as compared with traditional half‐duplex relaying. Due to the increasing demands for more system capacities and higher data rate, a throughput‐guaranteed and power‐aware relay selection mechanism is essential so that services can be successfully accomplished within tolerable power consumption. It is also imperative to prevent cellular users from interfering and preserve resources for more users at the same time. In current paper, we proposed an efficient relay selection scheme with subchannel reusing. Using the nonconflict group discovery algorithm, firstly, we divided D2D pairs into different groups based on the neighbor lists of all the devices. The D2D pairs in the same group were considered nonconflictive. By building a matrix that represents the power consumption of D2D transmission peers through relays, we proposed a group‐oriented relay selection scheme based on the Hungarian method allowing subchannel reuse over relay‐assisted D2D networks. Applying this mechanism, different D2D pairs are able to transmit messages at the same subchannel, whenever they are in the same group. Better throughput and spectrum usage than currently available relay selection schemes without subchannel reusing can be obtained. Particularly, more D2D pairs in high dense networks can be accommodated, and spectrum resources can be better preserved. The simulation results showed that our proposed mechanism can improve the total throughput by up to 35% as compared with an existing relay selection scheme without subchannel reusing, called as PRS‐D2D, when most D2D pairs are in a few groups.  相似文献   

3.
严杰  宋荣方 《电信科学》2019,35(11):1-8
非正交多址接入技术作为5G的候选技术之一受到了广泛关注。研究了以系统吞吐量优化为目标的多载波多用户NOMA系统下行链路的资源分配问题。在该问题的求解中,为了提高系统的吞吐量,子载波间采用线性注水算法,叠加用户间采用分数阶功率分配算法。同时,考虑了远近用户数目不等场景下能够调度更多的用户,在NOMA传输方案设计中引入时分的概念,将整个时间段t分为两个时隙,在不同时隙内实现不同远近用户分组的动态配对方案,从而在保证用户公平性的基础上,充分利用子信道资源,实现系统吞吐量的优化。仿真结果表明,对比于传统NOMA和OFDMA,提出的方法可以在相同的发射功率情况下传输更多的比特数。  相似文献   

4.
This paper puts forward a user clustering and power allocation algorithm for non-orthogonal multiple access (NOMA) based device-to-device (D2D) cellular system. Firstly, an optimization problem aimed at maximizing the sum-rate of the system is constructed. Since the optimization problem is a mixed-integer non-convex optimization, it is decomposed into two subproblems, namely user clustering and power allocation subproblem. In the subproblem of user clustering, the clustering algorithms of cellular user and D2D pair are proposed respectively. In the power allocation subproblem, the gradient assisted binary search (GABS) algorithm and logarithmic approximation in successive convex approximation (SCA) are used to optimize the power of subchannel (SC) and D2D transmitted power respectively. Finally, an efficient joint iterative algorithm is proposed for the original mixed inter non-convex non-deterministic polynomial (NP)-hard problem. The simulation results show that the proposed algorithm can effectively improve the total system rate and the larger the ratio of cellular users (CUs) to total users, the larger the total system rate.  相似文献   

5.
Cognitive nonorthogonal multiple access (NOMA) technique allows multiple users to share the same time and same frequency resources to fulfil the reliability and spectral efficiency requirements of 5G communication standards. In this paper, simultaneous wireless information and power transfer (SWIPT)–based full‐duplex cognitive NOMA downlink system is proposed. In this system, secondary source (SS) serves as a relay to far primary user as there is no direct link from the primary source. NOMA technique is used at SS to transmit information to far primary user and secondary user. The time switching mechanism is adopted at SS for harvesting energy and information decoding. Analytical closed‐form expressions are derived for the outage probabilities of both primary and secondary users. Outage analysis is carried out in Nakagami‐ fading environment in the presence of self‐interference at SS. In addition to that, the optimal harvesting time to maximize the instantaneous throughput of the far primary user is also derived. Numerical results are plotted to validate the derived expressions. It is inferred that the outage probability of the proposed system depends on the fading environment, harvesting parameters, and self‐interference at SS.  相似文献   

6.
Nowadays, the Orthogonal Multiple Access (OMA) principle has utilized for allocating proper radio resources in wireless networks. However, as the count of users rises, OMA‐based approaches may not satisfy the stringent emerging requirements including very low latency, very high spectral efficiency, and massive device connectivity. Moreover, there are significant challenges in cellular‐enabled Machine‐to‐Machine (M2M) communications due to the unique features of M2M‐based applications. In order to overwhelm these challenges, non‐orthogonal multiple access (NOMA) principles emerge as a solution to enhance the spectral efficiency while allowing some degree of multiple access interference at receivers. Hence, this paper intends to develop an optimal resource allocation mechanism for M2M communication. Here, the nonlinear energy harvesting performed with the aid of an accessing technology termed as NOMA. The key objective of the proposed resource allocation model is the minimization of the total energy consumption of the network. For attaining the minimized power consumption, the time allocation, and transmission power of NOMA is optimally tuned by a hybrid optimization algorithm. The proposed hybrid algorithm merges the beneficial concepts of Rider Optimization Algorithm (ROA) and FireFly (FF) algorithm and implements a new algorithm termed as FireFly Modified Bypass‐based Rider Optimization Algorithm (FMB‐ROA). Finally, the analysis of total energy concerning various constraints validates the performance of the proposed model over conventional models.  相似文献   

7.
Energy harvesting (EH) has been considered as one of the promising technologies to power Internet of Things (IoT) devices in self‐powered IoT networks. By adopting a typical harvest‐then‐transmit mode, IoT devices with the EH technology first harvest energy by using wireless power transfer (WPT) and then carry out wireless information transmission (WIT), which leads to the coordination between WPT and WIT. In this paper, we consider optimizing energy consumption of periodical data collection in a self‐powered IoT network with non‐orthogonal multiple access (NOMA). Particularly, we take into account time allocation for the WPT and WIT stages, node deployment, and constraints for data transmission. Moreover, to thoroughly explore the impact of different multiple access methods, we theoretically analyse and compare the performance achieved by employing NOMA, frequency division multiple access (FDMA), and time division multiple access (TDMA) in the considered IoT network. To validate the performance of the proposed method, we conduct extensive simulations and show that the NOMA outperforms the FDMA and TDMA in terms of energy consumption and transmission power.  相似文献   

8.
Nonorthogonal multiple access (NOMA) is viewed as one of the key enabling candidate for the fifth‐generation systems. The effectiveness of such networks heavily relies on the power allocation. This paper addresses the problem of power allocation in a downlink multiuser hybrid NOMA‐orthogonal multiple access (OMA) network, where NOMA is integrated into OMA. Users with strong channel conditions are paired up with the users having weak channel conditions based on a random mechanism. Further, user pairs compete in an auction game for the transmit power being sold by the base station. Bids are placed iteratively by each user pair such that it maximizes their own utility. The existence of a unique Nash equilibrium has been proved theoretically. Simulation results show that the proposed scheme achieves higher average sum rate of users in comparison with that of the existing algorithms.  相似文献   

9.

In this paper, we derive and optimize the total throughput of non orthogonal multiple access (NOMA) with energy harvesting. The source S harvests energy from radio frequency signal received from node A. The source uses the harvested energy to transmit data to N NOMA users classified using instantaneous or average power of channel gains. We optimize the powers allocated to NOMA users and harvesting duration to maximize the total throughput. We also derive packet waiting time and total delays for all NOMA users. We optimize powers allocated to NOMA users and harvesting duration to minimize a combination of total delays of all users. Our results are valid for Nakagami channels with arbitrary positions of users.

  相似文献   

10.
《电子学报:英文版》2017,(6):1297-1301
Device-to-Device (D2D) communications have drawn considerable attention with the obvious advantages of a higher data rate and spectrum efficiency. However, this also brings intra-cell interference due to resource sharing with traditional Cellular users (CUs). An effective resource allocation scheme for D2D communications to maximize the system throughput is developed. This scheme first utilizes the guard area model to restrict the interference between D2D users (DUs) and CUs. Then, a max-flow algorithm is used to match the pair of CUs and DUs and maximize the total sum rate of the communication system. Numeral results demonstrate that the proposed scheme can yield significant throughput gain while maintaining quality for both CUs and DUs.  相似文献   

11.
杨佳颖  李汀  解培中 《信号处理》2021,37(8):1441-1451
传统蜂窝网络中,多址接入技术起着尤为关键的作用,与正交多址(Orthogonal Multiple Access,OMA)技术相比,非正交多址(Non-Orthogonal Multiple Access,NOMA)能够支持的用户数量远远超过可用正交资源的数量,可以达到更高的频谱效率和用户公平性。因此,为提高异构蜂窝网络的整体容量,本文研究了NOMA增强型设备到设备(Device to Device,D2D)的资源分配问题,并将其分解为两个独立的子问题:信道分配和功率控制。一方面,基于Coalition博弈为D2D组分配合适的信道;另一方面,对D2D发送功率和功率分配因子依据可行解域进行联合优化,以最大化整个网络中D2D可实现速率。仿真结果表明所提算法在保证系统性能的同时,还可以有效降低计算复杂度。   相似文献   

12.
张永棠  赵元成 《电讯技术》2021,61(10):1250-1256
为了解决设备对设备(Device-to-Device,D2D)资源共享带来的信号干扰问题,提出了一种5G异构云无线接入网络的D2D通信资源分配算法.在保证服务质量的前提下,将宏用户设备的频谱资源分配给D2D和中继用户设备,并且把资源分配问题看作一对一的匹配博弈.采用婚姻匹配理论,得到初始的匹配方案.在初始匹配的基础上,提出了一种遵循卡尔多-希克斯(Kaldor-Hicks)原则的资源交换策略,以提高系统的吞吐量.仿真结果表明,该资源分配算法收敛较快,与现有方案相比,能使系统吞吐量提升15%以上,能给系统用户带来约10%的增益,并且有较强抗信道干扰能力.  相似文献   

13.
The time switching‐based relaying (TSR) scheme is considered in energy harvesting protocol to implement with its advantage to nonorthogonal multiple access (NOMA) system. In particular, decode‐and‐forward (DF) mode is proposed to employ in relay to forward signal to serve two far NOMA users. There are two main metrics including outage probability and ergodic rate, which are derived in exact expressions with respect to varying performance under impacts of energy harvesting fractions. To evaluate system performance, outage event and related capacity are illustrated, and we tailor performance gap among two NOMA users and such gap can be controlled by selecting of appropriate power allocation factors assigned for each user to obtain optimal performance. By examining node arrangement, target rates and varying transmit signal to noise ratio (SNR), it can be further achieved performance in several situations of such NOMA. As important result, the considered NOMA system outperforms than the conventional multiple access scheme, and this expected result is confirmed in numerical result and theoretical results. We also explore impacts of transmit power at source, noise power, the other key parameters of energy harvesting scheme to exhibit outage, and ergodic performance. Simulation results are presented to corroborate the proposed methodology.  相似文献   

14.
For us to meet the green and reliable communication requirement by the forthcoming fifth generation mobile networks, this paper focuses on a secrecy constrained device‐to‐device (D2D) underlay massive multiple‐input multiple‐output hybrid network, where the D2D user (DU) and cellular user (CU) links are exposed to passive malicious eavesdroppers. The D2D transmitters harvest the power from the signals of dedicated power beacons (PBs), but also the ambient radio frequency (RF) interference of CUs. The signals of PBs are known previously at the receivers of both the D2D and cellular users but are not known at eavesdroppers so that it can be regarded as an artificial noise. For the interested hybrid networks, we first present an energy‐harvesting scheme based on the inversion power control where the power received at the corresponding receiver is higher than the receiver's sensitivity. Then, by modeling the locations of network elements as Poisson point process and applying stochastic geometry, we derive the sufficient probability that a typical D2D transmitter harvests sufficient energy to establish communication links. Finally, with the derived sufficient probability, we evaluate the performance of the CUs and DUs in the achievable ergodic rate and the secrecy outage probability. Both the analytical and simulated results show that precious power of network is saved because of the ambient RF interference exploited, and the secrecy of both D2D and cellular links is improved simultaneously because of the signal of PBs modeled as artificial noises at CUs and DUs.  相似文献   

15.
To guard the communication quality of cell edge users (CEUs) and simultaneously improve the energy‐spectrum efficiency, a novel 3‐tier heterogeneous network (HetNet) model is proposed, which consists of macro cells, femtocells, and device‐to‐device (D2D) networks. Specially, with a predefined cell split factor R , the macro cell users are split into as cell center users (CCUs) and CEUs, respectively. Correspondingly, the total available spectrum band consisting of N channels is divided into CCU band and CEU band with a given coefficient pm. The CCU band containing pmN subchannels is shared by CCUs and femtocell users (FUs), and the CEU band containing (1 ? pm) N subchannels is shared by D2D users and CEUs. The perfect network synchronization is assumed, and a communication round consists of downlink transmission and uplink transmission phases. The battery‐free D2D terminals harvest energy from the ambient radio frequency interference in the downlink transmission phase based on inverse power control scheme and communicate in the uplink transmission phase only when they harvest enough energy to perform channel inversion toward the receiver. For such 3‐tier HetNets, by modeling the network elements as independent Poisson point processes (PPPs) and using stochastic geometry method, we first investigate the sufficiency probability that a D2D transmitter harvests enough energy to establish a communication link. Then, by combining sufficiency probability and channel access probability, the thinned independent PPPs for the locations of CCUs, CEUs, FUs, and D2D users are modeled. Based on these thinned PPP models, we perform a comprehensive investigation on the coverage probabilities of CCU, CEU, and FU uplinks as well as the D2D transmission. The simulated and numerical results show that using the presented cell split strategy enhances the performance of CCUs and CEUs because of the decrease of interference. The presented comparison analysis displays that the effect of D2D networks on the macro cell or the whole HetNets is limited and can be omitted. Therefore, the energy and spectrum efficiencies of networks are enhanced, simultaneously. At the same time, our results indicate that by using our derivations, we can perform the optimal design of the HetNets.  相似文献   

16.
In this paper, a novel reinforcement learning (RL) approach with cell sectoring is proposed to solve the channel and power allocation issue for a device‐to‐device (D2D)‐enabled cellular network when the prior traffic information is not known to the base station (BS). Further, this paper explores an optimal policy for resource and power allocation between users intending to maximize the sum‐rate of the overall system. Since the behavior of wireless channel and traffic request of users in the system is stochastic in nature, the dynamic property of the environment allows us to employ an actor‐critic RL technique to learn the best policy through continuous interaction with the surrounding. The proposed work comprises of four phases: cell splitting, clustering, queuing model, and channel allocation and power allocation simultaneously using an actor‐critic RL. The implementation of cell splitting with novel clustering technique increases the network coverage, reduces co‐channel cell interference, and minimizes the transmission power of nodes, whereas the queuing model solves the issue of waiting time for users in a priority‐based data transmission. With the help of continuous state‐action space, the actor‐critic RL algorithm based on policy gradient improves the overall system sum‐rate as well as the D2D throughput. The actor adopts a parameter‐based stochastic policy for giving continuous action while the critic estimates the policy and criticizes the actor for the action. This reduces the high variance of the policy gradient. Through numerical simulations, the benefit of our resource sharing scheme over other existing traditional scheme is verified.  相似文献   

17.
Wang et al proposed cross‐layer resource allocation for orthogonal frequency division multiple access (OFDMA) video transmission systems. Unlike Wang et al, we add non‐orthogonal multiple access (NOMA) to the downlink OFDMA video transmission system and propose power allocation for users on each subcarrier (cluster) to minimize sum of video mean square error (MSE) to increase the peak signal‐to‐noise ratio (PSNR), the video quality. For OFDMA/NOMA video communication systems, we propose cross‐layer user clustering to reassign the subcarriers based on sum video distortion minimization and derive the optimal power allocation among NOMA users on the same subcarrier to minimize the sum video distortion. Numerical results show that the proposed scheme outperforms the previous OFDMA cross‐layer scheme by Wang et al by 2.2 to 4.5 dB in PSNR and previous OFDMA NOMA physical layer scheme by Ali et al by 2 to 4.4 dB in PSNR, when SNR = 15 dB, and the number of users is 6 to 12.  相似文献   

18.
Xu  Jun  Guo  Chengcheng  Yang  Jianfeng 《Wireless Networks》2019,25(3):1273-1288

With the tremendous increment of traffic in the next generation mobile networks, device to device (D2D) communication is proposed to relieve the traffic burden of the base station and improve the overall network capacity. It supports direct communications between devices and could reuse the resources of cellular users (CUs). Despite the advantages, D2D communications bring great challenges in interference management. In this paper, we study the power control and channel allocation problems in three scenarios: (1) one CU and one D2D pair; (2) one CU and multiple D2D pairs; (3) multiple CUs and multiple D2D pairs. The goal is to coordinate the mutual interferences and maximize the overall network capacity. We derive sufficient conditions to guarantee the efficiency of D2D communications in scenarios with one CU and one D2D pair. We propose the bio-inspired PSO-P power control algorithm for the scenarios with one CU and multiple D2D pairs, and the PSO-CP algorithm for the scenarios with multiple CUs and multiple D2D pairs to jointly assign channels and powers. Simulation results show that the proposed algorithms are efficient in improving the overall network capacity.

  相似文献   

19.
The simultaneous wireless information and power transfer or energy harvesting (EH) can be combined in nonorthogonal multiple access (NOMA) as green applications towards 5G. This paper investigates a new cooperative EH‐NOMA protocol, where the intermediate relay has not equipped the fixed power source and acts as a wireless powered relay to help signal transmission to representative weak user and strong user in NOMA. However, impacts of imperfect channel estimation contribute to outage system performance evaluations. We formulate the power resource assignment paradigms as two schemes, namely, fixed power allocation and dynamic power allocation, by considering imperfect channel state information (CSI). To solve this problem, we derive the closed‐form expressions of outage probability under imperfect CSI and the power allocation constraints. The expected numerical results related to the derived expressions for the outage probability are examined that numerical and the Monte Carlo simulations are strictly matching lines.  相似文献   

20.
We develop a joint spectrum sharing and power control strategy to increase the admissible number of device-to-device (D2D) links in an underlaying cellular network while guaranteeing the quality-of-service (QoS) of both D2D links and cellular users (CUs). The proposed spectrum sharing algorithm, termed as interference-filling (IF), examines whether the SINR requirements of all the existing CUs and D2D users can be met if a new D2D pair is admitted. In the sequel, two power control schemes are proposed to check the resultant interference level and increase the transmit power of the admitted D2D pairs group-by-group to further improve the system throughput. IF algorithm is based on the ordering statistics of the interference amounts from D2D transmitters to CUs, thus neither grid searching nor iteration is needed. Furthermore, the two proposed power control schemes are in closed-forms. These two favorable properties make the proposed strategy cost-effective and computationally efficient. Numerical results show the effect of the proposed IF and power control schemes in term of admissible D2D pairs and system sum rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号