首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
目的:建立海蒿子多糖超声波-微波协同提取工艺,提高海蒿子多糖的提取率。方法:利用硫酸-苯酚法考察正交试验在不同粒度、提取时间、料液比、超声波功率、微波功率条件下多糖提取率,选出最佳超声波-微波协同提取工艺。结果:最佳提取工艺为粒度40目、提取时间20min、料液比1:25(g/mL)、超声波功率75%、微波功率200W,其中粒度对多糖提取率的影响最大。结论:超声波-微波协同提取能缩短提取时间并提高海蒿子多糖提取率。  相似文献   

2.
研究超声波-微波协同萃取芹菜黄酮的工艺条件.以远红外干燥的芹菜粉为原料,通过单因素和正交试验探讨乙醇浓度、液料比、微波功率、萃取时间及超声波等因素对萃取效果的影响.确定最佳的萃取工艺:80%乙醇为溶剂,液料比30∶1(mL/g),超声波和600 W微波功率协同萃取240 s,芹菜总黄酮和芹菜素提取率分别为1.051%和14.156 μg/g,均高于回流提取6 h时的提取率.  相似文献   

3.
采用微波—超声波协同萃取法对荔枝核中总黄酮和多糖进行连续提取,考察了料液比、微波—超声波功率、提取温度等因素对荔枝核总黄酮和多糖提取率的影响,得到荔枝核中总黄酮的最佳提取工艺为:乙醇浓度70%、料液比1∶30、微波—超声波功率600~800W、提取温度60℃、提取时间30min,此工艺条件下总黄酮提取率为8.201%。荔枝核多糖最佳提取工艺为:料水比为1∶35、微波—超声波功率700~900W、提取温度90℃、提取时间15min,多糖提取率为4.557%。  相似文献   

4.
采用微波-超声波协同提取落葵中的多糖,研究超微粉碎与普通粉碎的多糖提取率差别,并对超微粉碎的提取进行条件优化。结果表明:1)在设定的相同条件下,超微粉碎落葵的多糖提取率比普通粉碎提高64.11%;2)通过单因素试验考察了液料比、时间、超声波功率和微波功率对于超微粉碎落葵多糖提取率的影响;3)在单因素试验的基础上,采用Box-Behnken中心设计对超微粉碎落葵进行微波-超声波协同提取多糖条件优化,确定最佳工艺条件为微波功率331 W、超声波功率193 W、提取时间18 min、液料比50 m L/g,在此最佳工艺条件下,落葵多糖提取率的可达到27.39%,相对误差为-2.35%,与理论值基本符合,表示该模型能很好的预测实际提取情况。  相似文献   

5.
超声波—微波协同萃取姜辣素的工艺研究   总被引:1,自引:0,他引:1  
研究超声波-微波协同萃取姜辣素的工艺条件。以生姜粉为材料,通过单因素和正交试验探讨超声波-微波协同萃取姜辣素的工艺条件中溶剂种类、乙醇浓度、微波功率、微波处理时间、料液比及超声波等因素对萃取效果的影响。最佳工艺条件:70%乙醇为溶剂;料液比1:12.5(W:V);超声波250W微波协同处理60s,姜辣素的提取率达到1.843%,处理后物料经70℃热回流提取2h,姜辣素的提取率可达到3.262%,是直接热回流提取2h的1.5倍。  相似文献   

6.
以新鲜绿芦笋老茎超微粉为原料,采用超声波-微波协同提取绿芦笋老茎中多糖,在单因素试验基础上,采用Box-behnken试验设计和响应面分析法,探讨液料比、超声功率、微波功率和超声时间对绿芦笋老茎中粗多糖提取率的影响。结果表明,优化后的绿芦笋老茎粗多糖超声波-微波协同法提取工艺为超声功率936 W、液料比42︰1(m L/g)、微波功率804 W、超声时间20 min,在此条件下粗多糖得率为4.23%。  相似文献   

7.
以银杏渣为材料,通过单因素和正交实验探讨超声波-微波协同萃取多糖的工艺条件中微波功率、微波处理时间及料液比等因素对萃取效果的影响.确定了最佳工艺条件:纯水为溶剂,料液比1:20,超声波和300W微波协同处理100s,多糖提取率5.07%,为热水浸提6h的88.7%.抗氧化性实验表明,银杏多糖具有一定的清除羟基自由基和DPPH自由基的能力,清除能力与浓度呈较明显的量效关系.  相似文献   

8.
响应面分析法优选黄花菜多糖提取工艺   总被引:3,自引:0,他引:3  
优选黄花菜多糖的微波提取工艺条件。采用响应面分析法,以提取物中黄花菜多糖含量为指标,考察微波功率、萃取时间、料液比等因素对提取率的影响。优选出黄花菜多糖的最佳工艺为微波功率540W、萃取时间8.30min、料液比为1:18,该条件下黄花菜多糖提取率为11.15%。  相似文献   

9.
利用响应面法优化微波提取生姜中多糖的工艺条件。在单因素试验的基础上,选取料液比、浸泡时间、微波时间和微波功率为影响因子,应用Box-behnken中心组合设计建立数学模型,以多糖的提取率为响应值,进行响应面分析。微波提取生姜中多糖的最佳工艺条件为料液比1∶22.21(g/m L),浸泡时间为120.06 min,微波时间为86.43 s,微波功率为247.02 W。此条件下多糖的提取率预测值为18.91%,验证值为18.93%。  相似文献   

10.
采用超声波-微波协同法提取桑黄菌丝体多糖。通过单因素和L_9(3~4)正交试验研究物料粒度、料液比、微波功率、微波处理时间对桑黄菌丝体多糖提取率的影响。试验结果表明,微波功率、物料粒度和微波处理时间对桑黄菌丝体多糖提取率均有显著的影响。确定最佳的提取参数为:料液比1∶25(g/mL),物料粒度0.150 mm,超声波功率为250 W,微波功率500 W,微波处理时间6 min。在最佳条件下,桑黄菌丝体多糖提取率可达5.316%;在一定的剂量范围内,提取到的桑黄菌丝体多糖能明显增强小鼠的免疫功能。  相似文献   

11.
采用超声波-微波协同法提取蛹虫草多糖,并研究其对小鼠脾细胞增殖的影响,初步评价其免疫活性。通过单因素和L18(37)正交试验研究了物料粒度、料液比、超声波功率、超声波时间、超声提取次数、提取温度、乙醇与浓缩液之比对蛹虫草多糖提取率的影响。正交试验结果表明,超声波功率、物料粒度对蛹虫草多糖的得率均呈现出显著的影响,进而确定蛹虫草多糖提取最优工艺参数:物料粒度0.150 mm,提取次数为3次,微波功率400 W,超声波功率300 W,超声波处理时间30 min,提取温度70℃,料液比1∶40(g/mL),乙醇与浓缩液之比4∶1(体积比)。在最佳条件下,可得到多糖提取率为6.28%。小鼠脾细胞增殖试验表明,在一定的剂量内,提取到的蛹虫草多糖能明显促进小鼠脾细胞的增殖,表明蛹虫草多糖具有免疫调节活性。  相似文献   

12.
响应面法优化超声波辅助提取柿子多糖工艺的研究   总被引:1,自引:0,他引:1  
为优化柿子多糖的超声波提取工艺,采用单因素和响应面试验研究超声波提取的液料比、提取温度、超声功率及超声时间对磨盘柿多糖提取效果的影响。研究表明:最佳提取工艺条件为液料比18.04mL/g,提取时间32.12min,超声功率405.30W,提取温度40℃。在该条件下磨盘柿多糖提取率的预测值为15.49%,验证值为15.23%,误差为1.71%。经比较,超声波辅助提取柿子多糖的得率比传统水提法提高了51.71%。  相似文献   

13.
本文对粗毛纤孔菌多糖的提取及体外降脂作用进行研究,为粗毛纤孔菌多糖的开发利用提供理论依据。试验以粗毛纤孔菌为原料,以多糖提取率为考察指标,采用单因素实验和Box-Behnken试验设计研究了超声微波协同制备粗毛纤孔菌多糖(IHP)的工艺,对比分析了热水提取法和超声波辅助法对IHP提取率和体外胆酸盐结合能力的影响。结果表明,IHP的最佳提取工艺参数为:料水比1:33 g:mL,微波时间50 s,微波功率500 W,超声时间51 min,超声波功率200 W,此条件下多糖提取率为85.61%。与超声波辅助法和热水提取法相比,提取率分别增加了24.87%和36.38%。三种提取方法制备的IHP体外胆酸盐结合实验结果表明,IHP对牛磺胆酸钠和甘氨胆酸钠具有显著的结合能力,与多糖剂量呈正相关,且IHP对牛黄胆酸钠的结合能力强于甘氨胆酸钠。IHP在相同质量浓度条件下,三种提取方法制备的多糖对胆酸盐的结合能力为超声微波辅助提取>超声辅助提取>热水浸提,且超声微波辅助制备的多糖对甘氨胆酸钠和牛磺胆酸钠结合率分别为30.93%、32.13%。本研究表明超声微波辅助提取法能够显著提高IHP提取效果和体外结合胆酸盐的能力,为制备高活性IHP及其开发利用提供理论依据。  相似文献   

14.
以猕猴桃根为原料,研究其多糖的微波辅助提取工艺条件。采用单因素试验和正交试验,探讨料液比(猕猴桃根粉:蒸馏水)、提取温度、提取时间、微波功率等对猕猴桃根多糖提取率的影响,并以提取率为评价指标,优化提取工艺。实验结果表明:微波辅助提取猕猴桃根多糖的最佳工艺条件为料液比1:20(g/mL)、提取温度60℃、提取时间15min、微波功率600W,在此条件下猕猴桃根多糖的提取率为11.34%。  相似文献   

15.
超声波辅助提取德江天麻多糖工艺优化   总被引:2,自引:0,他引:2  
以德江天麻为原料,优化超声波辅助提取德江天麻中多糖的工艺条件。在考察料液比、超声时间、超声温度、粒度4个因素对天麻多糖提取率的影响的基础上,采用响应面法建立以天麻多糖提取率为响应值的二次回归数学模型。超声波辅助提取各因素对天麻多糖提取率的影响大小为:料液比>超声温度>超声时间>粒度。最佳提取条件为:天麻粒度为过60目筛(0.250 mm)、料液比为1∶25(g∶mL)、超声温度为40 ℃的条件下超声提取35 min,德江天麻多糖提取率为33.4%。  相似文献   

16.
研究用超声波辅助酶法提取河蚬粗多糖,考察超声温度、超声时间、料液比、超声功率对多糖产量的影响,运用Doehlert matrix设计与响应曲面优化得到了最优条件下的最优产量.结果表明,超声波辅助酶法提取河蚬粗多糖最优工艺参数为超声温度82℃、超声时间35min、料液比37mL/g、超声功率270W,多糖产量达到42.7%.  相似文献   

17.
目的采用纤维素酶-超声法从玉米须中提取槲皮素,得到最佳工艺,为进一步开发玉米须资源提供依据。方法以槲皮素得率为指标,通过单因素试验,研究乙醇体积分数、液料比、超声时间、超声功率及酶用量对槲皮素得率的影响,利用正交法对影响槲皮素得率的上述5个因素进行优化。结果最佳提取工艺参数为乙醇体积分数50%、液料比25:1(m L/g)、超声时间40 min、超声功率200 W、酶用量0.014 mg。在此条件下,通过3次验证实验,测得槲皮素的得率为(0.374±0.023)%。结论采用正交法优化纤维素酶-超声法提取玉米须槲皮素的工艺具有可行性。  相似文献   

18.
超声波辅助提取茶多糖及其分子量变化的研究   总被引:5,自引:0,他引:5  
为了解超声波强化茶多糖提取的效果及其对茶多糖分子量的影响,本实验研究了茶多糖提取过程中温度、液料比、时间、pH值及超声功率等因素对提取率的影响。实验结果表明,传统提取方法的最优条件为:温度60℃,液料比20:1,时间120min,pH值6.0,在最优条件下茶多糖的得率为4.26%;超声波辅助提取法的最优条件为:超声功率150W,液料比30:1,时间40min,温度60℃,pH值7.0,在此条件下茶多糖的得率为5.15%。提取得到的茶多糖样品通过GPC测定,传统提取法得到的茶多糖样品平均相对分子质量为66439,而超声波提取得到的样品的平均相对分子质量为47447。超声波辅助提取可明显提高茶多糖的得率,但同时对茶多糖产生降解作用。  相似文献   

19.
分别对软枣猕猴桃多糖超声辅助提取工艺及乙醇沉淀工艺进行优化。以软枣猕猴桃多糖提取率为响应值,以超声功率、超声时间、液料比为自变量,利用响应面分析法,确定超声辅助提取软枣猕猴桃多糖的最佳工艺条件;以软枣猕猴桃多糖提取率为响应值,以乙醇体积分数、乙醇用量、醇沉时间为自变量,确定乙醇沉淀软枣猕猴桃多糖的最佳工艺条件。结果表明:超声辅助提取软枣猕猴桃多糖的最佳工艺条件为超声功率260W、超声时间8min、液料比6:1(mL/g),在此条件下,软枣猕猴桃多糖提取率达到1.48%(m/m);乙醇沉淀软枣猕猴桃多糖的最佳工艺条件为乙醇溶液体积分数90%、乙醇用量为浓缩液的7倍、醇沉时间4h,在此条件下,软枣猕猴桃多糖提取率达到1.55%(m/m)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号