首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sol–gel derived Bi2Ti2O7 ceramic powders have been prepared from methoxyethoxides of bismuth and titanium (molar ratio of Ti/Bi = 1.23 and water/alkoxides = 1.31). The Bi2Ti2O7 phase was stable at a low temperature (700 °C), but it then transformed into mixed phases of Bi4Ti3O12 and Bi2Ti4O11 at 850–1150 °C. The single phase of Bi2Ti2O7 reoccurred at 1200 °C. Dielectric properties and ferroelectric behavior of samples sintered at 1150 and 1200 °C were examined. Under frequency of 1 MHz, samples sintered at 1150 and 1200 °C had a dielectric constant of 101.3 and 104.2, and a loss tangent of 0.0193 and 0.0145, respectively. Only the sample sintered at 1150 °C showed ferroelectric behavior, where remanent polarization is 3.77 μC cm−2 and coercive field is 24 kV cm−1. Thus, the Bi2Ti2O7 did not exhibit ferroelectricity, but the mixed phase of Bi4Ti3O12 and Bi2Ti4O11 did.  相似文献   

2.
Chang Jung Kim   《Thin solid films》2004,450(2):261-264
Ferroelectric bismuth lanthanum titanate (Bi3.25La0.75Ti3O12; BLT) thin films were deposited on Pt/TiO2/SiO2/Si substrate by chemical solution deposition method. The films were crystallized in the temperature range of 600–700 °C. The spontaneous polarization (Ps) and the switching polarization (2Pr) of BLT film annealed at 700 °C for 30 min were 22.6 μC/cm2 and 29.1 μC/cm2, respectively. Moreover, the BLT capacitor did not show any significant reduction of hysteresis for 90 min at 300 °C in the forming gas atmosphere.  相似文献   

3.
The changes of the crystallinity of μc-Si phase are studied in samples deposited with hydrogen dilution ratio, H2/SiH4, from 9.0 to 19.0 by hot-wire CVD (Cat-CVD). In the samples deposited at filament temperature, Tf, of 1850 °C, the crystalline fraction and the crystallite size of μc-Si phase increased with increasing the H2/SiH4. The carbon content, C/(Si+C), was almost constant. In the XRD patterns, the intensity of Si(1 1 1) peak decreased and that of Si(2 2 0) peak increased with increasing the H2/SiH4. In the samples deposited at Tf of 2100 °C with H2/SiH4 over 11.4, the μc-Si phase was not formed and the C/(Si+C) increased. The growth mechanism of μc-Si in hetero-structured SiCx alloy films is discussed.  相似文献   

4.
Hydroxyapatite (HA) has been synthesised in presence of 10–30 wt.% of m-ZrO2 by solid state reaction between tricalcium phosphate (TCP) and Ca(OH)2 at 1000 °C for 8 h. The m-ZrO2 was partly converted into t-ZrO2 by partial consumption of CaO which in turn resulted in a mixture of β-TCP and HA. On sintering these HA–β-TCP–ZrO2 composite powders at 1100–1400 °C for 2 h, the HA is further decomposed into β-TCP and CaO. The CaO so produced reacts further with m-ZrO2/t-ZrO2 generating a mixture of t-ZrO2 and CaZrO3 in different proportions. These various phases formed interfere with the sinterability of the composites due to their differential shrinkages leading to a overall reduced density as compared to that of pure HA. The composites show a T-onset of decomposition at around 1150 °C and a 40% HA yield was obtained at the highest sintering temperature of 1400 °C. The products were subjected to XRD for phase analysis and the microstructural features were studied by SEM.  相似文献   

5.
The microwave dielectric properties and microstructures of Ba(Mg1/3Ta2/3)O3 (BMT) ceramics sintered at low temperatures with 2–3 wt.% NaF additives were investigated. BMT ceramics sintered at 1340 °C for 3–12 h showed dielectric constants (r) of 25.5–25.7, Qf values of 41 500–50 400 GHz and temperature coefficients of the resonator frequency (τf) of 10.9–21.4 ppm °C−1. The variation of sintering time almost had no effect on the dielectric constant. The Qf value increased and the τf decreased with increasing sintering time. The ordering degree of Mg2+ and Ta5+ at B-sites increased with increasing sintering time.  相似文献   

6.
AgInSnxS2−x (x = 0–0.2) polycrystalline thin films were prepared by the spray pyrolysis technique. The samples were deposited on glass substrates at temperatures of 375 and 400 °C from alcoholic solutions comprising silver acetate, indium chloride, thiourea and tin chloride. All deposited films crystallized in the chalcopyrite structure of AgInS2. A p-type conductivity was detected in the Sn-doped samples deposited at 375 °C, otherwise they are n-type. The optical properties of AgInSnxS2−x (x < 0.2) resemble those of chalcopyrite AgInS2. Low-temperature PL measurements revealed that Sn occupying an S-site could be the responsible defect for the p-type conductivity observed in AgInSnxS2−x (x < 2) thin films.  相似文献   

7.
HfO2 thin films with columnar microstructure were deposited directly on ZnS substrates by electron beam evaporation process. SiO2 thin films, deposited by reactive magnetron sputtering, were used as buffer layers, HfO2 thin films of granular microstructure were obtained on SiO2 interlayer by this process. X-ray diffraction patterns demonstrate that the as-deposited HfO2 films are in an amorphous-like state with small amount of crystalline phase while the HfO2 films annealed at 450 °C in O2 for 30 min and in Ar for 150 min underwent a phase transformation from amorphous-like to monoclinic phase. Antireflection effect in certain infrared wave band, such as 3–6 μm, 4–12 μm, 4–8 μm and 3–10 μm, can be observed, which was dependent on the thickness of thin films. The cross-sectional images of HfO2 films, obtained by field emission scanning electron microscopy, revealed that there was no distinct morphological change upon annealing.  相似文献   

8.
Lead molybdenum sulfides PbxMo6S8−y with rhombohedral structure were prepared by vacuum seal technique at 1000°C. The nonstoichiometric range of lead (x) varies between 0.95 and 1.05, and that of sulfur (8−y) varies between 7.55 and 7.80. On the basis of these results and preparing some mixed compounds, the phase diagram of Pb-Mo-S system at 1000°C was established. The compositional dependence of the rhombohedral lattice parameters aR and R and that of the superconducting critical temperature Tc of the single phase of PbxMo6S8−y have been examined. It was difficult to find out the compositional dependence of aR and R and that of Tc, because of the narrow ranges of the nonstoichiometry. Among the nonstoichiometric compounds, Pb0.95Mo6S7.55 shows the highest Tc (Tc−ON=15.5K, Tc−END=13.9K). From the measurement of normal state resistivity, all the compounds of the PbxMo6S8−y showed the properties of metallic condoctors.  相似文献   

9.
A new method to synthesize fullerene and sulfur compounds has been developed. Using this method, C60S16 and C70S16 compounds were grown from dilute fullerene and sulfur toluene solution. Their atomic structures were analyzed by x-ray diffraction with the single crystal. The C60S16 crystal is C-centered monoclinic structure of a=2.0874 nm, b=2.1139 nm, c=1.05690 nm and β=111.93°, and the C70S16 has a primitive monoclinic, P21/c, with lattice parameters of a=1.5271 nm, b=1.49971 nm, c=2.18024 nm and β=109.791°. In this compound, the structure of fullerenes is maintained and sulfur atoms form S8 rings placed around the fullerenes.  相似文献   

10.
Atmospheric pressure chemical vapour deposition of tin monoselenide and tin diselenide films on glass substrate was achieved by reaction of diethyl selenide with tin tetrachloride at 350–650 °C. X-ray diffraction showed that all the films were crystalline and matched the reported pattern for SnSe and/or SnSe2. Wavelength dispersive analysis by X-rays show a variable Sn:Se ratio from 1:1 to 1:2 depending on conditions. The deposition temperature, flow rates and position on the substrate determined whether mixed SnSe–SnSe2, pure SnSe or pure SnSe2 thin films could be obtained. SnSe films were obtained at 650 °C with a SnCl4 to Et2Se ratio greater than 10. The SnSe films were silver–black in appearance and adhesive. SnSe2 films were obtained at 600–650 °C they had a black appearance and were composed of 10 to 80 μm sized adherent crystals. Films of SnSe only 100 nm thick showed complete absorbtion at 300–1100 nm.  相似文献   

11.
The ceramics were prepared successfully by the addition of WO3 to the Mn-modified Pb(Zr0.52Ti0.48)O3–Pb(Mn1/3Sb2/3)O3–Pb(Zn1/3Nb2/3)O3 (PZT–PMS–PZN) for high power piezoelectric transformers application. XRD analysis indicated that the ceramics were mainly composed of a tetragonal phase in the range of 0–1.0 wt.% WO3 addition. The grain size of the ceramics significantly decreased from 10.0 to 2.9 μm by addition of WO3. Moreover, the addition of WO3 promoted densification of the ceramics and increased mechanical quality factor (Qm), planar coupling factor (Kp) and piezoelectric constant (d33) kept high values, whereas, dielectric loss (tan δ) was low. Δf (=fa − fr) slightly changed when WO3 addition was above 0.5 wt.%. The ceramics with 0.6 wt.% WO3 addition, sintered at 1150 °C showed the optimized piezoelectric and dielectric properties with Qm of 1852, Kp of 0.58, d33 of 243 pC/N and tan δ of 0.0050. The ceramics are promising candidates for high power piezoelectric transformers application.  相似文献   

12.
Lithium doped silver niobate (Ag1−xLixNbO3, 0 < x < 0.1) is one of the candidate materials for lead-free piezoelectric materials. In this study, Ag1−xLixNbO3 single crystals were successfully grown by a slow cooling method. Crystal structure was assigned to perovskite-type orthorhombic (monoclinic) phase. Dielectric properties were measured as a function of temperature. As a result, with increasing lithium contents, the phase transition at around 60 °C was shifted to lower temperature while the phase transition at around 400 °C was shifted to higher temperature. On the basis of these peak shifts, the lithium contents in Ag1−xLixNbO3 single crystals were determined. Moreover, PE hysteresis measurement revealed that pure silver niobate crystal was weak ferroelectrics with Pr of 0.095 μC/cm2 while Ag0.9Li0.1NbO3 (ALN10) crystal was normal ferroelectrics with Pr of 10.68 μC/cm2. About this ALN10 crystal, polling treatment was performed and finally piezoelectric properties were measured. As a result, high electromechanical coupling coefficient k31 over 70% was observed.  相似文献   

13.
The effect of CuO addition on the microstructures and the microwave dielectric properties of MgTa2O6 ceramics has been investigated. It is found that low level-doping of CuO (up to 1 wt.%) can significantly improve the density of the specimens and their microwave dielectric properties. Tremendous sintering temperature reduction can be achieved due to the liquid phase effect of CuO addition observed by scanning electronic microscopy (SEM). The sintered samples exhibit excellent microwave dielectric properties, which depend upon the liquid phase and the sintering temperature. With 0.5 wt.% CuO addition, MgTa2O6 ceramic can be sintered at 1400 °C and possesses a dielectric constant (r) of 28, a Q × f value of 58000 GHz and a temperature coefficient of resonant frequency (τf) of 18 ppm/°C.  相似文献   

14.
Ultrafine La(Ca)CrO3 (LCC) powders were prepared through glycine-nitrate gel combustion process. The effect of glycine-to-nitrate ratio on batch size, particle size, nature of agglomeration and densification was studied. As-prepared powders when calcined at 700 °C resulted in LCC along with a small amount of CaCrO4. The primary particle size obtained in case of stoichiometric and fuel-rich precursor was found to be 25–60 and 60–180 nm, respectively. It was found that the final powder had softer agglomerates with increasing glycine-to-nitrate ratio, which in turn improved the sintered density. The powder obtained through fuel-rich precursor could be sintered to ≈98% of its theoretical density at 1300 °C without applying any ball milling operation.  相似文献   

15.
The preparation of thorium phosphate-diphosphate (Th4(PO4)4P2O7, TPD) was developed through the precipitation of thorium phosphate-hydrogenphosphate hydrate (Th2(PO4)2(HPO4)·H2O, TPHPH) at 150–160 °C in closed PTFE container or in autoclaves. From EPMA analyses and SEM observations, the initial precipitate was single phase and multilayered. The behaviour of TPHPH (orthorhombic system with a = 21.368(2) Å, b = 6.695(1) Å and c = 7.023(1) Å) was followed when heating up to 1250 °C. It was first dehydrated leading to the anhydrous thorium phosphate-hydrogenphosphate (TPHP, orthorhombic system with a = 21.229(2) Å, b = 6.661(1) Å and c = 7.031(1) Å at 220 °C) after heating between 180 and 200 °C. This one turned progressively into the new low-temperature variety of TPD (called -TPD, orthorhombic system with a = 21.206(2) Å, b = 6.657(1) Å and c = 7.057(1) Å at 300 °C) correlatively to the condensation of hydrogenphosphate groups into diphosphate entities. These three phases (TPHPH, TPHP and -TPD) exhibit closely related 2D layered structures, therefore different from the 3D structure of the thorium phosphate-diphosphate (high-temperature variety). This latter compound, now called β-TPD, was obtained by heating -TPD above 950 °C. All the techniques involved in this study (XRD, Raman and IR spectroscopy, 1H and 31P NMR) confirmed the successive chemical reactions proposed.  相似文献   

16.
Structural and optical properties have been investigated for surface β-FeSi2 layers on Si(100) and Si(111) formed by ion beam synthesis using 56Fe ion implantations with three different energies (140–50 keV) and subsequent two-step annealing at 600 °C and up to 915 °C. Rutherford backscattering spectrometry analyses have revealed Fe redistribution in the samples after the annealing procedure, which resulting in a Fe-deficient composition in the formed layers. X-ray diffraction experiments confirmed the existence of /gb-FeSi2 by annealing up to 915 °C, whereas the phase transformation from the β to phase has been induced at 930 °C. In photoluminescence measurements at 2 K, both β-FeSi2/Si(100) and β-FeSi2/Si(111) samples, after annealing at 900–915 °C for 2 h, have shown two dominant emissions peaked around 0.836 eV and 0.80 eV, which nearly coincided with previously reported PL emissions from the sample prepared by electron beam deposition. Another β-FeSi2/Si(100) sample has shown sharp emissions peaked at 0.873 eV and 0.807 eV. Optical absorption measurements at room temperature have revealed the allowed direct bandgap of 0.868–0.885 eV as well as an absorption coefficient of the order of 104 cm−1 near the absorption edge for all samples.  相似文献   

17.
Pt-PtOx thin films were prepared on Si(100) substrates at temperatures from 30 to 700°C by reactive r.f. magnetron sputtering with platinum target. Deposition atmosphere was varied with O2/Ar flow ratio. The deposited films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. Resistively of the deposited films was measured by d.c. four probe method. The films mainly consisted of amorphous PtO and Pt3O4 (or Pt2O3) below 400°C, and amorphous Pt was increased in the film as a deposition temperature increased to 600°C. When deposition temperature was thoroughly increased, (111) oriented pure Pt films were formed at 700°C. Compounds included in the films strongly depended on substrate temperature rather than O2/Ar flow ratio. Electrical resistivity of Pt-PtOx films was measured to be from the order of 10−1 Ω cm to 10−5 Ω cm, which was related to the amount of Pt phase included in the deposited films.  相似文献   

18.
The BaxSr1−xTiO3 (BST)/Pb1−xLaxTiO3 (PLT) composite thick films (20 μm) with 12 mol% amount of xPbO–(1 − x)B2O3 glass additives (x = 0.2, 0.35, 0.5, 0.65 and 0.8) have been prepared by screen-printing the paste onto the alumina substrates with silver bottom electrode. X-ray diffraction (XRD), scanning electron microscope (SEM) and an impedance analyzer and an electrometer were used to analyze the phase structures, morphologies and dielectric and pyroelectric properties of the composite thick films, respectively. The wetting and infiltration of the liquid phase on the particles results in the densification of the composite thick films sintered at 750 °C. Nice porous structure formed in the composite thick films with xPbO–(1 − x)B2O3 glass as the PbO content (x) is 0.5 ≥ x ≥ 0.35, while dense structure formed in these thick films as the PbO content (x) is 0.8 ≥ x ≥ 0.65. The volatilization of the PbO in PLT and the interdiffusion between the PLT and the glass lead to the reduction of the c-axis of the PLT phase. The operating temperature range of our composite thick films is 0–200 °C. At room temperature (20 °C), the BST/PLT composite thick films with 0.35PbO–0.65B2O3 glass additives provided low heat capacity and good pyroelectric figure-of-merit because of their porous structure. The pyroelectric coefficient and figure-of-merit FD are 364 μC/(m2 K) and 14.3 μPa−1/2, respectively. These good pyroelectric properties as well as being able to produce low-cost devices make this kind of thick films a promising candidate for high-performance pyroelectric applications.  相似文献   

19.
The aim of the present work has been to produce high-dense Si3N4 ceramics by a cheaper pressureless sintering method and then to attain vacuum heat treatment to remove residual grain boundary glass in gaseous form. LiAlO2 was used as a sintering additive rather than using Li2O, since its grain boundary glass is not stable above 1200 °C. LiAlO2 was synthesised from 42% Li2CO3 and 58% Al2O3 powder mix reacting together at 1450 °C for 3 h in a muffle furnace. X-ray analysis showed that 95% LiAlO2 was obtained. LiAlO2 was milled and added to silicon nitride powder as a sintering additive. Hot-pressing and pressureless sintering of LiAlO2 containing Si3N4 compacts were carried out at temperatures between 1450–1750 °C. The sintered samples were vacuum heat-treated at elevated temperatures under high vacuum to remove intergranular glass and to increase refractoriness of Si3N4 ceramics. Scanning electron microscope images and weight loss results showed that Li in grain boundary glass (Li–Al–Si–O–N) was successfully volatilised, and oxidation resistance of the sintered samples was increased.  相似文献   

20.
The alloy Hastelloy B undergoes phase transformations in the temperature range of 600°–800° C. These phase transformations were studied in some detail by electron microscopy. The essential result of this study was the observed formation of the DO22 structure as an intermediate phase. The DO22 structure is relatively stable in Hastelloy B and its further transformations are easily observable. At 600°C it is transformed to Ni4 Mo followed by a partial transformation to Ni3 Mo, whereas at 700°C Ni3 Mo is formed from DO22 directly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号