首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycrystalline samples of Sm partially filled skutterudites SmyFexCo4-xSb12 were prepared by melting and Spark Plasma Sintering technique. The results of Rietveld refinement showed that the obtained SmyFexCo4-xSb12 samples possessed filled skutterudite structures. The thermal parameter (B) of Sm is larger than that of Sb, Fe, and Co, indicating that Sm "rattled" in Sb-icosahedron voids. The effects of filling atom Sm on thermoelectric properties of these compounds were investigated. With the increase of Sm filling fraction (y), electrical conductivity decreased, Seebeck coefficient increased and had a maximum value when y was 0.38; thermal conductivity reduced and had a minimum value when y was 0. 32. At 750 K, the highest figure of merit of 0.68 was obtained for Sm0.32Fe1.47Co2.53Sb12.  相似文献   

2.
Starting with elementary powders, thermoelectric materials CexCo4Sb12 were prepared by mechanical alloying and spark plasma sintering (MA-SPS). XRD analyses reveal that the expected major phase, named skutterudite was formed in MA process and was kept after SPS. The thermoelectric properties of MA-SPS samples including resistivity, Seebeck coefficient, power factor, thermal conductivity and the dimensionless figure of merit (ZT) were studied by varying Ce content and temperature. Depending on Ce levels, both P and N types of thermoelectric semiconductors were obtained. MA-SPS sintered Ce1.0Co4Sb12 exhibits the highest ZT in the range of 100-500℃ and the maximum ZT is found at x=1.0 and 400℃.  相似文献   

3.
Long-lasting phosphorescence (LLP) was observed in Ce-doped Y3Al5O12 phosphors synthesized in reducing atmosphere. The characteristic emission of the 2D-2F5/2 and 2D-2F7/2 transition of Ce3+ in photoluminescence (PL) and LLP spectra was studied. It was interesting that the ratio between the peak areas of 2D-2F5/2 and 2D-2F 7/2 transitions in the PL spectrum was different from the ratio of that in LLP emission spectrum. And the ratios had different change regularities with increased Ce3+ concentration. The p...  相似文献   

4.
Sm-filled skutterudites SmxCo4Sb12 (x=0.1, 0.2, 0.5) were synthesized via high pressure and high temperature (HPHT) technique. The temperature dependences of electrical resistivity, Seebeck coefficient and thermal conductivity were measured on these compounds in the range of 300-723 K. All samples showed n-type conduction. The thermal conductivity of SmxCo4Sb12 was significantly depressed as com-pared to unfilled CoSb3. It was believed that Sm atoms "rattled" in the voids of structure and substantially affected the phonon propagation through the lattice. The dimensionless thermoelectric figure of merit, ZT, increased with increasing temperature and reached a maximum value of 0.81 for Sm0.5Co4Sb12 at 723 K.  相似文献   

5.
Samarium-filled skutterudites SmxCo4Sb12(x=0.5,1.0) skutterudite thermoelectric(TE) materials with enhanced power factor were prepared by high-pressure and high-temperature(HPHT) technique.The microstructure properties were characterized with X-ray diffraction and scanning electron microscopy.The electrical resistivities and Seebeck coefficients of those samples were measured in the temperature range of 300-723 K,and the samples of SmxCo4Sb12 showed n-type conduction.The Seebeck coefficient in absolute valu...  相似文献   

6.
The magnetocaloric effect of LaFe11.7Si1.3 compound was investigated under an external magnetic field up to 9 T.The magnetization changed drastically at the Curie temperature TC under different fields and TC increased with the applied fields.The magnetic entropy change |?SM| vs temperature peak consisted of a spike and a plateau.The spike was a spurious result,while the plateau part resulted from the field-induced itinerant-electron metamagnetic(IEM) transition above TC,which went up with magnetic fields increasing.The width of the magnetic entropy change increased with magnetic fields at a rate of dL?S /dT~4 K/T.  相似文献   

7.
Nanostructured Y2O3 was successfully prepared via a two-step and template-free method.Firstly,yttrium hydroxide precursor was galvanostatically grown on the steel substrate from chloride bath by direct and pulse current deposition modes.Direct current deposition was carried out at the constant current density of 0.1 A/dm2 for 600 s.The pulse current was also performed at a typical on-time and off-time(ton=1 s and toff=1 s)with an average current density of 0.05 A/dm2(Ia=0.05 A/dm2)for 600 s.The obtained hydroxide films were then scraped from the substrates and thermally converted into final oxide product via heat-treatment.Thermal behaviors and phase transformations during the heat treatment of the hydroxide powder samples were investigated by differential scanning calorimetry(DSC)and thermogravimetric analysis(TGA).The final oxide products were characterized by means of X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR)and scanning electron microscopy(SEM).The results showed that the well-crystallized Y2O3 with brain-and sphere-like morphology were achievable via pulse and direct deposition modes,respectively.It was concluded that pulse current cathodic electrodeposition offered a facile route for preparation of nanostructured Y2O3.  相似文献   

8.
The rare earth Pr doped Ca1-x Prx MnO3(x=0,0.06,0.08,0.1,0.12,and 0.14) compound bulk samples were prepared to study the effect of Pr doping on thermoelectric transport properties of CaMnO3 compound system.The doped samples exhibited single phase composition within the experimental doping range,with condensed bulk microstructure and small porosities.The electrical resistivity was remarkably reduced for doped samples,on account of the enhanced carrier concentration;the absolute value of Seebeck coefficient was deteriorated mainly due to enhanced electron carrier concentration.The electrical performances of the doped samples reflected by resistivity and Seebeck coefficient fluctuations were optimistically tuned,with an optimized power factor value of 0.342 mW/(m·K2) at 873 K for x=0.08 sample,which was very much higher comparing with that of the un-doped sample.The lattice thermal conduction was really confined,leading to distinctly repressed total thermal conductivity.The thermoelectric performance was noticeably improved by Pr doping and the dimensionless figure of merit ZT for the Ca0.92 Pr0.08 MnO3 compound was favorably optimized with the maximum value 0.16 at 873 K.  相似文献   

9.
The CoSb3 and Y0.18Co4Sb12 compounds were synthesized by a metallurgical route. Their bulk materials were prepared by the hot-pressed process under vacuum. Thermoelectric properties of the samples were measured by the thermoelectric measurement system and the laser flash diffusivity apparatus. The carrier type conversion of hot-pressed CoSb3 was found at about 530 K, while the conversion was missed for the Y0.18Co4Sb12 sample. Electrical conductivity of the Y0.18Co4Sb12 sample increased due to the increase of carrier concentration, and its thermal conductivity decreased due to the enhancement of phonon scattering. The value of ZT, figure of merit, for the Y0.18Co4Sb12 sample was obviously enhanced due to positive contribution of the electrical conductivity and the thermal conductivity.  相似文献   

10.
The Ba-, La- and Ag-doped polycrystalline Ca2.9M0.1Co4O9 (M=Ca, Ba, La, Ag) thermoelectric bulk samples were prepared via citrate acid sol-gel synthesis method followed by spark plasma sintering technique. The bulk samples were characterized and analyzed with regard to their phase compositions, grain orientations as well as microstructures. The high temperature thermoelectric transport properties of the bulk samples were studied in detail. All bulk samples were found to be single-phased with modified body texture. The electrical resistivity was modulated as a result of carrier concentration modification, however the carrier transport process was not influenced; the Seebeck coefficient was deteriorated simultaneously. The total thermal conductivity was remarkably reduced, on account of the decreasing of phonon thermal conductivity. The thermoelectric properties of the Ba-, La-, and Ag-doped bulk samples were optimized, and the Ba-doped Ca2.9Ba0.1Co4O9 system was found to have the highest dimensionless figure of merit ZT0.20 at 973K, which was remarkably higher than that of the un-doped sample.  相似文献   

11.
Lanthanum hydroxide with rod-like morphology was synthesized with simple hydration processing via the hydration of its bulk oxide in normal water solution at boiling temperature. An XRD pattern shows the formation of the hexagonal phase of La(OH)3, indicating that the hydration process is very rapid. The as-prepared La(OH)3 is almost entirely with a needle- or rod-like shape with a width of 2 - 3 μm and a length of 5 - 8 μm. The mechanism of the formation of La(OH)3 with rod-like morphology was preliminarily presented. It is easier to expand the simple hydration process on a large scale than the hydrothermal process.  相似文献   

12.
Synthesis and properties of Tb~(3 ) isomultiligand complexes  相似文献   

13.
(Y1-a, Gda)3-x(Al1-b, Gab)5O12∶Ce3 x was synthesized by high-temperature solid state reaction in reducing atmosphere based on high purity raw materials. The influences of Y3 , Gd3 , Al3 , Ga3 and activator-Ce3 on the performance of the phosphor were investigated. Ce3 is the luminescent center and activates the phosphor after it replaces Y partially. When x is less than 0.12, the volume of the crystal and the emission intensity of the phosphor increase with the quantity of Ce3 . When CeO2 is added too much, the phase CeAlO3 will appear. The excitation and emission peaks of the phosphor will shift to longer wavelength when the amount of Gd3 increases. The wavelength of the emission peak can shift about 20 nm when a equals 0.45. In opposite, the excitation and emission peaks will shift to shorter wavelength, when part of Al3 is replaced by Ga3 . The wavelength of the emission peak can shift about 20 nm when b equals 0.55. Through the replacemeat of Y3 or Al3 by Gd3 or Ga3 , the emission peak of the phosphor can be adjusted from 520 to 560 nm. In this way, the phosphor is more suitable for different chips.  相似文献   

14.
The phase relation, microstructure, Curie temperatures, hysteresis, and magnetocaloric effects of LaFex*11.6Si1.4 (x=0.96, 0.98, 1.0, and 1.02) compounds prepared by arc-melting and then annealed at 1423 K (1.5 h)+1523 K (4.5 h) were investigated. The main phase was NaZn13-type phase, the impurity phases included a small amount of α-Fe and LaFeSi phase in four samples. The crystal cell parameters of 1:13 phase increased from 1.1433(5) to 1.1454(4) nm with x increasing from 0.96 to 1.02, respectively. All samples kept the typical first-order magnetic transition. The increase of Fe strengthened IEM behavior, and led to the remarkable enhancement of MCE effect and negative slopes in Arrott plots around TC. The maximum ΔSM (T, H) under a low magnetic field (0-2 T) was 15.3, 16.8, 17.9, and 24.7 J/kg K with increasing of Fe content from x=0.96 to 1.02, respectively.  相似文献   

15.
Phosphors with controlled emission spectra are of great interest due to their application for white light emitting diodes.Herein, a new class of Sr3Y2(SiO3)6:Ce3+,Tb3+ phosphors were synthesized by a facile sol-gel combustion method. The phase structure,morphology, and luminescence properties of the phosphors were characterized by using powder X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), and photoluminescence excitation and emission spectra,respectively. The results on luminescence properties indicated that co-doped Ce3+ ions served as UV-light sensitizers with excitation energy partially transferred to Tb3+ ions, leading to green emission from Tb3+. Particularly, the corresponding emitting colors of the phosphors could be well-tuned from deep blue(0.16, 0.05) to green region(0.25, 0.45) by adjusting the molar ratio of Ce3+/Tb3+.  相似文献   

16.
Cubic YAG: Yb3+, Ho3+ pure phase nanocrystals were synthesized by using coprecipition nitrate and ammonium hydrogen carbonate as raw materials. After calcining the precipitates at 800 ℃, the resultant YAG: Yb3+, Ho3+ nanocrystals were nearly spheric and the particle size was about 40 nm. Intense upconversion spectra were observed on the powder compact pumped by a 980 nm continuous wave diode laser, and green emission centered at 549 nm, red emission centered at 667 nm, and NIR centered at 760 nm were all due to two photons process, which originated from 5S2 (5F4)→5I8, 5F5→5I8, and 5S2 (5F4)→5I7 transitions, respectively.  相似文献   

17.
Rare earth ions doped gadolinium oxybromide phosphors GdOBr:RE3 (RE=Eu, Tb, Ce) were synthesized by the method of solid-state reaction at high temperature, and the VUV-VIS spectroscopic properties of the phosphors were systematically investigated. Under the excitation of VUV or UV source, the phosphors doped with Eu3 and Tb3 show a bright and sharp emission at around 620 nm corresponding to the forced electric dipole 5D0→7F2 transition of Eu3 , and at around 544 nm corresponding to the 5D4→7F5 transition of Tb3 , respectively. For GdOBr:Ce3 , a broader and intense emission spanned 370-500 nm corresponding to the d-f transition of Ce3 was observed. The excitation spectra were also analyzed.  相似文献   

18.
The 2.0 μm emission originating from Ho3 :5I7→5I8 transition in Ho3 /Tm3 -codoped gallate-bismuth-germanium-lead glasses were investigated upon excitation with 808 nm laser diode (LD). Energy transfer (ET) process between Tm3 : 3F4 level and Ho3 : 5I7 level was also discussed. It was noted that the measured peak wavelength and stimulated emission cross-section of Ho3 -doped bis-muth-germanium-lead glasses were ~2.02 μm and 5.1×10–21 cm2, respectively. Intense emission of Ho3 in Tm3 /Ho3 -codoped GBPG glass were observed, which resulted from the ET between Tm3 : 3F4 and Ho3 : 5I7 level upon excitation with 808 nm LD.  相似文献   

19.
We presented results of electrical resistivity, magnetoresistivity and Seebek effect measurements done in the paramagnetic state of an antiferromagnetically ordering intermetallic compound TmIn3. It was found that the magnetic part of the electrical resistivity showed maximum at 18 K and the lgT dependence in temperature range 20<T<100 K. The magnetoresistivity was negative. The transversal magnetoresistivity fulfilled the single-ion Kondo scaling for temperatures 2<(T+0.5 K)<28 K. Thermoelectricpower displayed a sharp minimum at 10 K. Electrical properties indicated that TmIn3 is likely a dense Kondo system.  相似文献   

20.
The sintering behavior,microstructure and microwave dielectric properties of (1–x)CaTiO3–xLaAlO3 (x=0.1,0.3,0.5,0.7,0.9,respectively) ceramics were investigated systematically by thermogravimetry-differential thermal analysis (TG-DSC),X-ray diffraction (XRD),scanning electron microscopy (SEM) and a network analyzer.The result showed that forming temperature of the perovskite type crystal increased with increasing of x value.0.9CaTiO3-0.1LaAlO3 ceramics were sintered well from 1 400 to 1 550 oC,its bulk density increased with sintering temperature,and microwave dielectric properties of the ceramics at 1 400 oC was shown as follows: relative dielectric constant εr= 45.1,Q×f= 46 087 GHz and τf=–14.1×10–6/oC,respectively.But 0.7CaTiO3-0.3LaAlO3 ceramics were sintered well only when sintering temperature rose to 1 500 oC.(1–x)CaTiO3–xLaAlO3 (x=0.5,0.7 and 0.9,respectively) were not sintered well up to 1 550 oC and the sintered samples exhibited porous characteristic and with low bulk density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号