首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents the design, the properties, and the optimization study of a new type of ultrasonic linear motor. Numerical modeling has been carried out and simulations with software have been realized. To avoid performing a large number of simulations, sensitivity analysis has been carried out, in particular using design of experiments. The Doehlert method has been chosen in our study. The results found show that this preoptimization stage allows one to improve the deformation amplitude and to reduce the input parameter variation ranges. Finite element (FE) optimization is then carried out, and results show that the motion amplitudes can be increased compared to the initial design of the motor. Some experiments on prototypes show that the travel range of the motor has been increased while decreasing the applied voltage by a factor of 2.  相似文献   

2.
行波型杆式超声电机定子的参数化有限元法优化设计   总被引:2,自引:2,他引:0  
摘要:利用参数化有限元优化方法,对行波型杆式超声电机定子进行优化设计。首先,在确定电机定子初始结构的基础上,建立其参数化有限元模型。其次,对定子有限元模型进行模态分析,求解工作模态频率对各结构参数的灵敏度,选取灵敏度高的结构参数为设计变量,并以反映电机输出性能的重要参数作为目标函数。同时,设计了定子结构的优化方案,采用了零阶优化方法,对其结构进行优化设计。最后,根据优化结果,制作了定子样机。试验表明:定子工作模态和端面质点的振幅都满足了预期的设计要求,试验结果与优化设计结果相符。研究表明,利用该优化设计方法能有效地缩短超声电机设计周期。  相似文献   

3.
圆柱形三自由度超声电机定子的结构动力学优化设计   总被引:1,自引:0,他引:1  
在已有研究的基础上,利用结构动力学方法,对圆柱形三自由度超声电机的定子进行了优化设计。首先根据该种电机的设计要求和先前的经验,确定了其定子的结构形式。然后应用精度较高的体积单元,建立了定子的结构动力学有限元模型。在灵敏度分析、确定设计变量的基础上,建立起定子的优化设计数学模型。最后,采用约束变尺度优化方法,在M ATLAB环境下编制了计算程序,得到了定子的优化设计方案,并制作了定子。实验表明:定子的工作模态满足预期的设计要求;实验结果与理论设计结果相符。同时,运用优化设计方法大大提高了设计效率。  相似文献   

4.
李争  赵亮  郭鹏  于絮泽 《振动与冲击》2021,(3):172-177,186
建立了一种考虑不同运转情况的对于三定子多自由度超声电机的接触模型。介绍了三自由度超声电机的基本原理和结构并计算得出了其驱动转矩,引入Hertz接触理论和Mindlin理论对摩擦情况进行分析,考虑了摩擦因数的动态非线性和摩擦力分布的非线性变化,提出了一种新型的接触模型,改进了传统的线性摩擦模型;通过转矩关系和摩擦模型对电机不同运动情况下摩擦力分布进行分析,并用Matlab绘制相应的摩擦力分布图。分析结果验证了三自由度超声电机合理性,说明了三相压电定子接触状态根据驱动情况和负载而定,为进一步的优化设计和性能改进奠定了基础。  相似文献   

5.
Proper closure is an essential packaging quality aspect and can, amongst others, be achieved with ultrasonic sealing. The ultrasonic sealing performance depends on the film type, and the seal settings, such as seal time, applied force and ultrasonic amplitude. Because these parameters are less intuitive than heat seal parameters and optimal settings are undefined for many films, this work presents an efficient approach to evaluate the effect of these settings on the ultrasonic sealing performance. An experimental design defines the experiments to perform. A response surface methodology is then used to model the relation between seal settings and sealing performance. Based on these models, the seal settings are optimized. As there are several criteria to express sealing performance, single‐criteria and multicriteria optimizations are described. The approach was illustrated for a polyethylene terephthalate/linear low‐density polyethylene‐C4 film. The seal settings were optimized to obtain high seal strength, limited ultrasonic horn displacement, and low seal energy. The optimum settings were 0.1 seconds (seal time), 4.32 N/mm (force), and 28.75 μm (amplitude). The predicted optimum strength, horn displacement, and energy were 2.32 N/mm, 40 μm, and 11.66 J, respectively. Besides the optimum, the seal window is also of interest. A broad seal window ensures sufficient seal strength for a wide range of settings. For the polyethylene terephthalate/linear low‐density polyethylene‐C4 film, a strength of ≥90% of the optimum was obtained for 39% of the input combinations within the design space. The presented approach is widely applicable (other films and sealing processes) since it is flexible in the input parameters, design, and responses.  相似文献   

6.
In this paper, to exploit the contribution from not only the stators but also from other parts of miniature ultrasonic motors, an amplitude modulation drive is proposed to drive a miniature linear ultrasonic motor consisting of two rectangular piezoelectric ceramic plates. Using finite-element software, the first longitudinal and second lateral-bending frequencies of the vibrator are shown to be very close when its dimensions are 8 mm x 2.16 mm x 1 mm. So one single frequency power should be able to drive the motor. However, in practice the motor is found to be hard to move with a single frequency power because of its small vibration amplitudes and big frequency difference between its longitudinal and bending resonance, which is induced by the boundary condition variation. To drive the motor effectively, an amplitude modulation drive is used by superimposing two signals with nearly the same frequencies, around the resonant frequency of the vibrators of the linear motor. When the amplitude modulation frequency is close to the resonant frequency of the vibrator's surroundings, experimental results show that the linear motor can move back and forward with a maximum thrust force (over 0.016 N) and a maximum velocity (over 50 mm/s).  相似文献   

7.
In this research, the nonlinear, double-dynamic Taguchi method was used as design and analysis methods for a high-precision positioning device using the combined piezo-voice-coil motor (VCM) actuator. An experimental investigation into the effects of two input signals and three control factors were carried out to determine the optimum parametric configuration of the positioning device. The double-dynamic Taguchi method, which permits optimization of several control factors concurrently, is particularly suitable for optimizing the performance of a positioning device with multiple actuators. In this study, matrix experiments were conducted with L9(3(4)) orthogonal arrays (OAs). The two most critical processes for the optimization of positioning device are the identification of the nonlinear ideal function and the combination of the double-dynamic signal factors for the ideal function's response. The driving voltage of the VCM and the waveform amplitude of the PZT actuator are combined into a single quality characteristic to evaluate the positioning response. The application of the double-dynamic Taguchi method, with dynamic signal-to-noise ratio (SNR) and L9(3(4)) OAs, reduced the number of necessary experiments. The analysis of variance (ANOVA) was applied to set the optimum parameters based on the high-precision positioning process.  相似文献   

8.
In this work, design and performance testing of an ultrasonic linear motor with dual piezoelectric actuator patches are studied. The motor system consists of a linear stator, a pre-load weight, and two piezoelectric actuator patches. The piezoelectric actuators are bonded with the linear elastic stator at specific locations. The stator generates propagating waves when the piezoelectric actuators are subjected to harmonic excitations. Vibration characteristics of the linear stator are analyzed and compared with finite element and experimental results. The analytical, finite element, and experimental results show agreement. In the experiments, performance of the ultrasonic linear motor is tested. Relationships between velocity and pre-load weight, velocity and applied voltage, driving force and applied voltage, and velocity and driving force are reported. The design of the dual piezoelectric actuators yields a simpler structure with a smaller number of actuators and lower stator stiffness compared with a conventional design of an ultrasonic linear motor with fully laminated piezoelectric actuators.  相似文献   

9.
Design of ultrasonic equipment is frequently facilitated with numerical models. These numerical models, however, need a calibration step, because usually not all characteristics of the materials used are known. Characterization of material properties combined with numerical simulations and experimental data can be used to acquire valid estimates of the material parameters. In our design application, a finite element (FE) model of an ultrasonic particle separator, driven by an ultrasonic transducer in thickness mode, is required. A limited set of material parameters for the piezoelectric transducer were obtained from the manufacturer, thus preserving prior physical knowledge to a large extent. The remaining unknown parameters were estimated from impedance analysis with a simple experimental setup combined with a numerical optimization routine using 2-D and 3-D FE models. Thus, a full set of physically interpretable material parameters was obtained for our specific purpose. The approach provides adequate accuracy of the estimates of the material parameters, near 1%. These parameter estimates will subsequently be applied in future design simulations, without the need to go through an entire series of characterization experiments. Finally, a sensitivity study showed that small variations of 1% in the main parameters caused changes near 1% in the eigenfrequency, but changes up to 7% in the admittance peak, thus influencing the efficiency of the system. Temperature will already cause these small variations in response; thus, a frequency control unit is required when actually manufacturing an efficient ultrasonic separation system.  相似文献   

10.
针对柔性机械臂运动中存在的形变现象进行柔性体动力学建模,引入耗散能描述轴承间黏性阻尼,引入关节等效形变描述关节柔性,引入模态假设法描述连杆柔性,引入电机绕组特性描述电机驱动力矩并通过拉格朗日方程建立动力学方程;对模型进行仿真求解,计算出不同传动比和附加重量质心工况下连杆末端的形变,通过对比分析求得连杆末端形变与传动比和附加重量质心之间的关系,为后期机械臂设计优化提供理论基础。  相似文献   

11.
This paper deals with the crack detection in structural elements by means of a genetic algorithm optimization method. The crack model takes into account the existence of contact between the interfaces of the crack. Many of the methods to detect a crack in beam-like structures are based on linear one dimensional models and are not straightforwardly applicable to structures such as beams or arcs with a breathing crack with or without contact. The present study addresses bi- and three-dimensional models to handle the dynamics of a structural element with a transverse breathing crack. The methodology is not restricted to beam-like structures since it can be applied to any arbitrary shaped 3D element. The crack is simulated as a notch or a wedge with a unilateral Signorini contact model. The contact can be partial or total. All the simulations are carried out using the general purpose partial differential solver FlexPDE, a finite element (FE) code. A genetic algorithm (GA) optimization method is successfully employed for the crack detection. The dynamic response at some points of the damaged structures are compared with the solution of the computational (FE) model using least squares for each proposed crack depth and location. An objective function arises which is then optimized to obtain an estimate of both parameters. Physical experiments were performed with a cantilever damaged beam and the resulting data used as input in the detection algorithm.  相似文献   

12.
Preform design plays an important role in improving the material flow, mechanical properties and reducing defects for forgings with complex shapes. In this paper, a study on shape optimization of preform tools in forging of an airfoil is carried out based on a multi-island genetic algorithm combined with a metamodel technique. An optimal Latin hypercube sampling technique is employed for sampling with the expected coverage of parameter space. Finite element (FE) simulations of multistep forging processes are implemented to obtain the objective function values for evaluating the forging qualities. For facilitating the optimization process, a radial basis function surrogate model is established to predict the responses of the hot forging process to the variation of the preform tool shape. In consideration of the compromise between different optimal objectives, a set of Pareto-optimal solutions are identified by the suggested genetic algorithm to provide more selections. Finally, according to the proposed fitness function, the best solution of multi-objective optimization on the Pareto front is confirmed and the corresponding preform tool shape proves optimal performances with substantially improved forging qualities via FE validation.  相似文献   

13.
A new type of piezoelectric linear motor incorporating a traveling wave has been developed. The linear motor is comprised of a stator and a carriage. The stator design, which consists of a meander-line structure and gear teeth mounted on the meander-line structure, is the focus of this article. The meander-line structure is constructed with bimorph actuators arranged in a line. These actuators are driven by two phased sets of alternating current (ac) in order to generate a traveling wave. The traveling wave is transferred to the gear teeth, by which the carriage is driven. Modeling of the stator is derived by use of a strain energy method. The performance of various materials is evaluated by analytical and experimental methods. The analytical and the experimental results are quite approximate. Modal analysis is investigated using ANSYS. Appropriate modes associated with ultrasonic levels of resonant frequency are selected to obtain desired motion and to enhance the output performance. Surface speed for various applied input voltage are studied and indicate a nearly linear relationship. The stator in combination with the carriage makes up the linear motor  相似文献   

14.
A die shape design sensitivity analysis (DSA) and optimization for a sheet metal stamping process is proposed based on a Lagrangian formulation. A hyperelasticity‐based elastoplastic material model is used for the constitutive relation that includes a large deformation effect. The contact condition between a workpiece and a rigid die is imposed through the penalty method with a modified Coulomb friction model. The domain of the workpiece is discretized by a meshfree method. A continuum‐based DSA with respect to the rigid die shape parameter is formulated using a design velocity concept. The die shape perturbation has an effect on structural performance through the contact variational form. The effect of the deformation‐dependent pressure load to the design sensitivity is discussed. It is shown that the design sensitivity equation uses the same tangent stiffness matrix as the response analysis. The linear design sensitivity equation is solved at each converged load step without the need of iteration, which is quite efficient in computation. The accuracy of sensitivity information is compared to that of the finite difference method with an excellent agreement. A die shape design optimization problem is solved to obtain the desired shape of the workpiece to minimize spring‐back effect and to show the feasibility of the proposed method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
A new type of piezoelectric linear motor incorporating a traveling wave has been developed. The linear motor is comprised of a stator and a carriage. The stator design, which consists of a meander-line structure and gear teeth mounted on the meander-line structure, is the focus of this article. The meander-line structure is constructed with bimorph actuators arranged in a line. These actuators are driven by two phased sets of alternating current (ac) in order to generate a traveling wave. The traveling wave is transferred to the gear teeth, by which the carriage is driven. Modeling of the stator is derived by use of a strain energy method. The performance of various materials is evaluated by analytical and experimental methods. The analytical and the experimental results are quite approximate. Modal analysis is investigated using ANSYS. Appropriate modes associated with ultrasonic levels of resonant frequency are selected to obtain desired motion and to enhance the output performance. Surface speed for various applied input voltage are studied and indicate a nearly linear relationship. The stator in combination with the carriage makes up the linear motor.  相似文献   

16.
The range of variation in environmental stimuli is much larger than the visual system can represent. It is therefore sensible for the system to adjust its responses to the momentary input statistics of the environment, such as when our pupils contract to limit the light entering the eye. Previous evidence indicates that the visual system increasingly centers responses on the mean of the visual input and scales responses to its variation during adaptation. To what degree does adaptation to a stimulus varying in luminance over time result in such adjustment of responses? The first two experiments were designed to test whether sensitivity to changes in the amplitude and the mean of a 9.6° central patch varying sinusoidally in luminance at 0.6 Hz would increase or decrease with adaptation. This was also tested for a dynamic peripheral stimulus (random patches rotating on the screen) to test to what extent the effects uncovered in the first two experiments reflect retinotopic mechanisms. Sensitivity to changes in mean and amplitude of the temporal luminance variation increased sharply the longer the adaptation to the variation, both for the large patch and the peripheral patches. Adaptation to luminance variation leads to increased sensitivity to temporal luminance variation for both central and peripheral presentation, the latter result ruling retinotopic mechanisms out as sole explanations for the adaptation effects.  相似文献   

17.
Dynamic and contact analysis of a bimodal ultrasonic motor   总被引:1,自引:0,他引:1  
A bimodal ultrasonic motor, which operates with only one power amplifier, uses two simultaneously excited modes to drive the rotor; a longitudinal mode and a flexural mode. The equations of motion describing the vibrations and contact behavior are derived by Hamilton's principle and the geometry constraint. The Lagrange multiplier method is used to treat the frictional contact problem. The finite element method and numerical integration scheme are used to simulate the dynamic responses of this system with and without contact. Some important factors are studied for the bimodal ultrasonic motor design. The factors include structure design, amplitude of input voltage, phase displacement, exciting frequency, and contact behavior.  相似文献   

18.
19.
介绍一种圆盘型非接触超声波马达的结构。利用有限元法计算了超声波马达定子在不同振动模态下的固有频率,并用激光测振仪对定子进行了测试,结果两者吻合较好。由于振幅和非接触马达的声辐射压力密切相关,因此通过谐响应分析计算了定子的振幅与定子驱动电压的关系,从而为马达的实验研究提供了理论依据。在最优模态B21下进行转子转速测试,测得最高转速为1600rpm。  相似文献   

20.
本文提出了一种根据人类行走姿态加以抽象的新型双足压电直线电机。音叉共鸣结构的引入使得驱动足可以产生大振幅,而且提高了压电换能效率,低电压即可驱动。驱动足实现大振幅的意义在于大大降低了对于导轨的要求,木轨、塑料轨等首次成为压电超声波电机的驱动导轨。本文建立了该电机简化的动力学模型,分析了定子拓扑结构、配重等设计参数对于输出机械性能的影响,给出了设计准则。通过实验测出了该电机的输出特性,最高输出速度为210mm/s,最大输出力为0. 5N。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号