共查询到18条相似文献,搜索用时 95 毫秒
1.
2.
3.
铣削加工系统三维稳定性理论研究与进展 总被引:3,自引:0,他引:3
切削颤振是高速加工过程中经常遇到的一种现象,而判断稳定切削常用的一种方法就是绘制稳定性图。主要针对国内外铣削加工颤振三维稳定性图和三维稳定性理论研究状况进行了综述,重点给出了Thevenot、U.Bravo和S.Herranz、Tony L.Schmitz和Altintas的稳定性理论。研究指出,为了保证材料的最大去除率,必须研究切削参数对于稳定性的影响,也就是需要研究主轴转速、轴向切深和径向切深对切削颤振影响的三维稳定性图。 相似文献
4.
5.
6.
针对铣削加工过程中产生的振动现象,提出了一种隐式Adams方法(Implicit Adams method,IAM)来预测铣削加工过程的稳定性。考虑再生颤振的铣削加工动力学方程可以表示为时滞线性微分方程,将刀齿周期可分为自由振动阶段和强迫振动阶段,对强迫振动阶段进行离散,运用IAM方法构建状态传递矩阵,利用Floquet理论,判定系统的稳定性,获得系统的稳定性叶瓣图。Matlab软件仿真结果表明,IAM方法是预测铣削稳定性的一种有效方法。随着离散数的增加,IAM方法的收敛速度要快于一阶半离散法(First-order semi-discretization method,1st-SDM)和二阶全离散法(Second-order full-discretization method,2nd-FDM),离散数较少的IAM方法能达到离散数较多的1st-SDM方法和2nd-FDM方法的局部离散误差。此外,在单自由度和双自由度动力学模型下,三种方法的稳定性叶瓣图显示,IAM方法预测铣削稳定性的预测精度均好于1st-SDM方法和2nd-FDM方法,计算效率远远高于1st-SDM方法,稍高于2nd-FDM方法。切削试验和仿真结果表明,IAM方法的预测精度和可靠度均好于1st-SDM方法和2nd-FDM方法。 相似文献
7.
8.
9.
10.
11.
针对国内数控铣削加工工艺参数选择存在的问题,基于动态铣削力建模和颤振稳定域分析计算,以MATLAB为开发工具,实现了铣削加工颤振稳定域仿真算法.通过模态锤击实验获得的频响函数,仿真出了整个加工系统的颤振稳定域图形,为进行铣削加工切削参数选择和优化提供了理论依据.验证实验证实了仿真算法的有效性和准确性,仿真方法在工厂得到了实际应用并取得了良好的应用效果. 相似文献
12.
AbstractChatter frequently occurs during cutting operations, which seriously restricts the machining productivity and workpiece accuracy. Consequently, accurate and efficient stability prediction is of great significance to determine stable machining parameters. A cubic Hermite–Newton approximation method which can determine the chatter stability boundaries more efficiently is presented in this paper. The milling dynamic system can be expressed as time-periodic delay differential equations (DDEs) with consideration of the regeneration effect. A typical benchmark example is provided to assess the convergence feature and stability lobes of the cubic Hermite–Newton approximation method and several existing methods. The results indicate that the cubic Hermite–Newton approximation method can achieve satisfactory results. For the sake of developing the cubic Hermite–Newton approximation method with higher convergence rate and computational efficiency, the tooth-passing period is further separated into two distinct phases according to whether the value of coefficient matrix equals to zero. Meanwhile, the linear interpolation polynomial is used to predict milling stability, and then piecewise polynomial interpolation was utilized in two adjacent time intervals to correct this prediction. By adopting the two benchmark examples, the effectiveness of the two new methods can be analyzed using existing methods. The results demonstrate that the two new methods have superior accuracy and efficiency. 相似文献
13.
14.
15.
16.
Wan Min Ma Ying-Chao Zhang Wei-Hong Yang Yun 《The International Journal of Advanced Manufacturing Technology》2015,79(1-4):589-603
The International Journal of Advanced Manufacturing Technology - The stability of milling process dominated by multiple modes was traditionally predicted in the time domain by only selecting the... 相似文献
17.
Michael J. Shorr Dr Steven Y. Liang 《The International Journal of Advanced Manufacturing Technology》1996,11(5):311-318
This research discusses the methodology of developing a symbolic closed form solution that describes the dynamic stability of multiflute end milling. A solution of this nature facilitates machine tool design, machining parameter planning, process monitoring, diagnostics, and control. This study establishes a compliance feedback model that describes the dynamic behavior of regenerative chatter for multiflute tool-work interaction. The model formulates the machining dynamics based upon the interconnecting relationship of the tool geometry and the machining system compliance. The tool geometry characterises the cutting forces as a function of the process parameters and the material properties, while two independent vibratory modules, the milling tool and the workpiece, represent the machining system compliance. The compliance feedback model allows the development of a corresponding characteristic equation. By investigating the roots of the characteristic equation, this research symbolically expresses the stability of the system as a function of the cutting parameters, the tool geometry, the workpiece geometry, and the vibrational characteristics of the machine tool. Machining experimentation examining the fidelity of the regenerative chatter model is discussed. The dynamic cutting forces, cutting vibration, and surface finish of the machining process confirm the validity of the analytical prediction.Nomenclature
b
damping coefficient: mass-spring-damper representation
-
b
e
equivalent damping coefficient: mass-spring-damper representation
-
C
compliance element
-
CWD
chip with density function
-
D
diameter of cutter
-
d
a
axial depth of cut
-
d
r
radial depth of cut
-
average total cutting force
-
K
r
radial specific cutting pressure constant
-
K
t
tangential specific cutting pressure constant
-
k
spring constant
-
k
e
equivalent spring constant
-
m
mass: mass-spring-damper representation
-
m
e
equivalent mass: mass-spring-damper representation
-
n
number of flutes on the cutter
-
p
x,y
elemental cutting forces
-
P
1,2
elemental cutting force functions
-
R
cutter radius
-
s
Laplace variable
-
TS
tooth sequencing function
-
chip thickness
-
t
c
average chip thickness
-
t
x
feed per tooth
-
helix angle
-
x
actual displacement of cutter tip
-
unit impulse function
-
d
damped circular frequency of vibration
-
damping ratio
-
spindle speed 相似文献