首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
纳米碳酸钙对丁腈橡胶性能影响研究   总被引:14,自引:1,他引:14  
为了研究纳米材料对橡胶性能的影响,以丁腈橡胶为基体材料,纳米级碳酸钙和常规碳酸钙为添加剂,对混炼工艺条件及纳米级和常规碳酸钙对丁腈橡胶性能的影响进行了研究。试验结果表明,纳米级碳酸钙可以大大提高丁腈橡胶的性能,不只作为增量填充剂,与常规碳酸钙的相容性比较好,但是在混炼过程中,必须充分加工以保证其在胶料中均匀分布。  相似文献   

2.
对纳米碳酸钙进行表面预处理,在纳米碳酸钙粒子表面包覆上一薄层有机高分子,降低纳米粒子的高表面能,调节疏水性,改善其与有机基料之间的润湿性和结合性,从而达到与氯乙烯等有机物亲和良好的状态,防止纳米碳酸钙粒子自身的团聚,将经过表面处理和未处理的纳米碳酸钙粒子分别在5L和50L反应釜中与氯乙烯单体进行悬浮聚合,使纳米碳酸钙粒子原位复合到PVC中,将聚合完毕的PVC粒料浆液进行透射电镜,扫描电镜观察,比较纳米碳酸钙的表面处理对于原位悬浮聚合法制备PVC/纳米碳酸钙复合材料的影响。  相似文献   

3.
采用乳液法制备了丁腈橡胶(NBR)/纳米碳酸钙(NCC)共沉橡胶,并对其性能进行了评价。基本性能实验结果表明:与NBR相比,共沉胶焦烧时间略有降低,正硫化时间略有增加,最大扭矩明显提高,共沉胶具有优异的基本物理性能;工业配方配合显示:共沉胶具有优异的基本物理性能、耐热空气老化性能以及耐热油性能;共沉胶成本明显降低,具有良好的应用前景。  相似文献   

4.
改性纳米碳酸钙填充丁腈橡胶性能研究   总被引:1,自引:0,他引:1  
研究了纳米碳酸钙对胶料性能的影响以及纳米碳酸钙与炭黑N330并用对丁腈橡胶的性能影响.结果表明.改性后纳米碳酸钙比未改性的纳米碳酸钙在胶料基本力学性能、耐老化性能及耐油性上均有提高,并用炭黑时.随着纳米碳酸钙量的增大胶料耐老化性能提高.  相似文献   

5.
采用硅烷偶联剂KH-570对纳米碳酸钙进行表面处理,然后通过熔融共混法制备聚氯乙烯/纳米碳酸钙(PVC/nano-CaCO3)复合材料,用透射电镜观察了nano-CaCO3粒子在PVC基体中的分散状况。随着nano-CaCO3用量的加大,复合材料的冲击强度和失重残余量都有所提高,热分解温度变化不大,玻璃化转变温度先下降然后又有所增加。  相似文献   

6.
丁腈橡胶/硼酸酯偶联剂改性纳米碳酸钙复合材料的性能   总被引:2,自引:0,他引:2  
用硼酸酯偶联剂对纳米碳酸钙进行表面改性,研究了丁腈橡胶(NBR)硼/酸酯偶联剂改性纳米碳酸钙复合材料的性能。结果表明,使用硼酸酯偶联剂改性纳米碳酸钙填充NBR能提高硫化胶的物理机械性能,当硼酸酯偶联剂用量为4份、改性纳米碳酸钙用量为75份时,硫化胶的综合性能最好;与未改性纳米碳酸钙填充NBR相比,硼酸酯偶联剂改性纳米碳酸钙填充的NBR混炼胶和硫化胶的弹性模量较小,Payne效应减弱,而损耗因子却较大;用硼酸酯偶联剂改性纳米碳酸钙填充NBR,化学交联质量分数提高,无机粒子与橡胶基体之间的化学结合作用增强。  相似文献   

7.
CPE包覆纳米CaCO3对PVC/纳米CaCO3复合材料结构与性能的影响   总被引:22,自引:1,他引:22  
研究了基体韧性、纳米CaCO3直接填充与用CPE包覆后填充PVC对复合材料力学性能的影响,并对其微观结构进行了探讨。结果表明,适当的基体韧性有助于获得较高的冲击强度;两种填充方法下,PVC复合材料的冲击强度和拉伸强度呈现出不同的变化趋势。包覆处理填充体系的冲击强度均要比未包覆处理填充体系的略低,而拉伸强度则相反,特别是在包覆小份量CaCO3(2份)时,所得复合材料的冲击强度甚至比PVC/CPE(8份)基体的低12%,而拉伸强度则出现最大值,比基体的高8.9%左右。  相似文献   

8.
为更好地改性纳米碳酸钙,采用脂肪酸(SA)对纳米碳酸钙进行原位包覆,并对原位包覆法机理作了探讨。先在纳米碳酸钙浆液中加入一定量强碱,然后将浆液加热至75.0~90.0 ℃,再在机械搅拌辅助下加入适量脂肪酸,浆液经过滤、干燥和粉碎解聚得表面包覆改性的纳米碳酸钙。包覆碳酸钙的吸油值、接触角测试,扫描电子显微镜表征及其在室温硫化硅橡胶和DOP糊中的应用实验表明:脂肪酸在纳米碳酸钙表面形成均匀、完整的包覆层,改性碳酸钙在聚合物中具有极佳的应用效果。研究发现,温度为90 ℃,n(SA+OA)∶n(OH-)=1∶1,n(SA+OA)/m(CaCO3)= 1.0×10-4 mol/g是原位法表面包覆纳米碳酸钙比较合适的条件。  相似文献   

9.
采用改进Hummers法制备氧化石墨烯(GO),并以聚乙烯亚胺为“桥接分子”制备GO/羧基丁腈橡胶(XNBR)纳米复合材料,考察GO/XNBR纳米复合材料的微观形貌、力学性能和耐有机溶剂渗透性能。结果表明:GO与XNBR基体结合良好且分散均匀;GO/XNBR纳米复合材料的拉伸强度由纯XNBR胶料的3.9 MPa提高到7.2 MPa(GO用量为0.7份),提高了约1.8倍;随着GO用量增大,GO/XNBR纳米复合材料对有机溶剂的耐渗透时间明显延长。  相似文献   

10.
丁腈橡胶/膨胀石墨导电纳米复合材料的制备和性能   总被引:11,自引:0,他引:11  
采用熔融插层法制备了丁腈橡胶/膨胀石墨纳米复合材料。扫描电镜(SEM)研究表明,超声处理后的膨胀石墨薄片厚度为纳米级。透射电镜(TEM)研究证实,膨胀石墨确以纳米级尺寸分散在橡胶基体中。力学性能研究表明,填加5份膨胀石墨时,纳米复合材料的拉伸强度最大,为28·4MPa,是不含膨胀石墨的复合材料的1·8倍。导电性能研究显示,填加10份膨胀石墨时,纳米复合材料的表面电导率和体积电导率分别为1·1×10-9S/cm和1·2×10-9S/cm,是不含膨胀石墨的复合材料的100倍和43倍。  相似文献   

11.
邓月义  代云水  况波  赵树高 《塑料》2007,36(5):84-87
将NBR、PVC及纳米CaCO3熔融复合以增韧PVC/纳米CaCO3复合材料.研究了复合材料的力学性能、流变性能、热性能及微观形态.结果显示NBR对PVC/纳米CaCO3具有增韧效果,材料的断裂伸长率明显增大,PVC/NBR/nano-CaCO3为100/12/8时冲击强度最大,达到了30kJ/m2,比对应的单独纳米CaCO3增韧的PVC提高了大约27%.NBR能降低PVC/CaCO3复合材料的熔体黏度,复合材料加工性能改善.同时NBR的加入使得复合材料的玻璃化转变温度降低,热稳定性变差.扫描电镜照片显示,PVC/NBR/nano-CaCO3为100/12/8时,NBR的加入提高了CaCO3的纳米级分散程度,冲击断面出现了纤维状形变,使得复合材料的冲击强度提高.  相似文献   

12.
合成了纳米CaCO3表面改性剂AP-01,将此改性剂改性的纳米CaCO3用于硬质聚氯乙烯(PVC)抗冲改性.观察PVC/改性纳米CaCO3复合材料的微观结构,并测试其力学性能.结果表明:改性纳米CaCO3以海岛结构分散于PVC基体中.改性纳米CaCO3加入量在10%时,复合材料缺口冲击强度达到18.2 kJ/m2,而复合材料拉伸强度几乎没有改变.对比普通硬脂酸改性纳米CaCO3增韧PVC,其具有明显的性能优势.  相似文献   

13.
填充剂对NBR/PVC共混物力学性能等的影响   总被引:2,自引:0,他引:2  
考察了填充剂(高耐磨炭黑、白炭黑、轻质碳酸钙)对丁腈橡胶/聚氯乙烯(NBR/PVC)热塑性弹性体(TPE)的力学性能和耐热老化、耐油性能的影响。  相似文献   

14.
研究了经过表面改性的纳米CaCO3添加量对PVC/米CaCO3复合材料聚合工艺和力学性能的影响。结果表明,纳米CaCO3经过处理后,表面包覆了一薄层的有机物。纳米CaCO3在3%-7%的添加范围内,可以缩短聚合反应时间。纳米PVC与普通PVC比较,冲击强度可提高到9.38kJ/m^2,断裂伸长率在拉伸强度略有降低的前提下增大到60.2%。纳米CaCO3的添加量为7%时,可以得到综合性能较好的纳米CaCO3/PVC复合树脂。  相似文献   

15.
王士财  李宝霞  楼涛  张晓东 《塑料》2007,36(4):59-62
通过对纳米碳酸钙(nano-CaCO3)表面处理及其对聚氯乙烯(PVC)、氯乙烯-丙烯酸丁酯共聚物(VC/BA)、nano-CaCO3三元复合体系加工工艺的考察,研制了PVC/(VC/BA)/nano-CaCO3复合材料,并对其力学性能进行了研究.结果表明以nano-CaCO3与VC/BA共聚物先制成复合母粒,再与PVC进行共混的二次分散成型工艺,比传统的将三者直接进行共混的一次分散成型工艺更有利于纳米粒子在基体中的分散,所制材料的力学性能更优.当复合母粒中VC/BA与nano-CaCO3的比例为2∶3时,材料的力学性能最佳,nano-CaCO3和VC/BA能协同增韧PVC,并且nano-CaCO3对材料具有补强作用,使材料在强度保持基本不变的情况下冲击性能得到大幅度提高,当PVC和复合母粒质量比为100∶20时,材料的冲击强度达到49.5kJ/m,是纯PVC(PVC的冲击强度为4.9kJ/m)的10倍,拉伸强度仍高达51.0MPa.  相似文献   

16.
冯绍华  张丽  王超  赵燕  宋炜 《塑料科技》2007,35(4):36-40
采用粉煤灰填充PVC,并添加玻璃纤维对复合材料进行增强。结果表明:在PVC中填加未经处理的粉煤灰后,体系力学性能随粉煤灰含量的增加而下降。用硅烷偶联剂和硬脂酸对粉煤灰进行表面处理后,共混体系的力学性能有所提高,且硅烷的处理效果要好一些。用玻璃纤维对该复合体系进行补强,填充量为8phr时,补强效果最佳。  相似文献   

17.
PVC的微发泡处理及PVC/CaCO3的原位复合   总被引:6,自引:0,他引:6  
研究了用原位生成法制备PVC/纳米CaCO3复合母粒的过程. 首先利用混合溶剂将PVC粉料溶胀,同时带入发泡剂偶氮二异丁腈,在112oC下进行固相微发泡. 利用已发泡的PVC,采用原位生成法制备了纳米CaCO3/PVC复合母粒. 通过扫描电镜观察,发现已发泡PVC颗粒表面布满微孔,纳米级CaCO3填充在PVC孔洞里. PVC/纳米CaCO3复合母粒同时起到了增韧增强的作用.  相似文献   

18.
分别采用3种不同的机械混炼法制备了有机蒙脱土(OMMT)/PVC/NBR纳米复合材料,并对其结构和性能进行表征.结果表明:采用将NBR与OMMT预混再与PVC混合的方法制备的纳米复合材料具有最佳的物理性能;当OMMT用量较小时,复合材料的物理性能随OMMT用量的增大而增大;所制得的纳米复合材料为插层型纳米复合材料.  相似文献   

19.
制备了可聚合非离子硼酸酯(BE)/甲基丙烯酸甲酯(MMA)/纳米碳酸钙复合材料,生产出经其改性的PVC树脂,并按管材配方混料,分析了试样的力学性能;并考察了改性PVC树脂在管材中的应用情况。结果表明:①生产BE/MMA/纳米碳酸钙复合材料的最佳工艺配比为:m(BE)∶m(MMA)∶m(纳米碳酸钙)=2∶3∶95。②BE/MMA/纳米碳酸钙复合材料的质量分数为10%时,改性PVC树脂试样的简支梁冲击强度最高。③改性PVC树脂在管材中的应用情况良好,不仅可代替普通PVC树脂,还可降低生产成本。  相似文献   

20.
利用胺类改性剂M处理木粉,研究了改性剂M和力学性能改性剂丙烯腈-苯乙烯共聚(物AS)的用量对聚氯乙(烯PVC)基复合材料力学性能的影响。结果表明:随着改性剂M用量的增加,复合材料的拉伸强度、无缺口冲击强度、弯曲强度以及弯曲模量都呈先上升后下降的趋势,且当M用量略大于2%时达到最大值;随着AS用量的增加,复合材料的拉伸强度、弯曲强度及弯曲模量都呈逐渐上升的趋势,无缺口冲击强度呈逐渐下降的趋势到,8%时趋于平缓。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号