共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
5.
碳材料是自然界中与人类关系最为密切的重要材料之一,伴随着纳米科技的发展,具有纳米结构的功能碳材料的研究逐渐深入,已经出现了石墨烯、碳纳米管等性能优异的纳米碳材料。纳米碳材料具有机械强度高、导热导电能力强等诸多优点以及环境友好特性,能够满足绿色化学和可持续性发展的要求,因而其在复合材料中的应用成为相关领域的研究热点。纳米碳材料的引入可以显著提高复合材料的性能,并且还可以赋予材料新的性能,其在功能复合材料方面有良好的应用前景。然而,由于纳米碳材料自身的结构特点,其在溶剂和聚合物基体中的分散性、相容性和稳定性较差,这一直阻碍着其性能在复合材料中的发挥,甚至可能导致材料的整体性能降低。因此,提高纳米碳材料的分散能力和使用性能一直是研究的难点和热点。通过化学的方法提高纳米碳材料的分散能力,操作过程复杂,生产成本增加,且化学品试剂大多具有很强的毒性。近年来,纳米碳材料的辐射改性受到各界广泛的重视,利用辐射技术制备和官能化修饰纳米碳材料,可以显著提高纳米碳材料的分散能力和与基体的相容性。辐射刻蚀和还原技术用于纳米碳材料的制备时,可对其结构进行设计,例如辐射制备短切碳纳米管,降低了碳纳米管的长度,可有效提高分散能力。利用高能射线还可将氧化石墨烯进行还原,提供简单高效制备石墨烯的新方法和新思路。辐射接枝可用于纳米碳材料的表面修饰,例如在碳纳米管或石墨烯表面接枝聚合含碳碳双键的酯和芳香类聚合物,提高了纳米碳材料在溶剂和聚合物基体中的分散性能,有助于制备各种高性能功能材料。本文综述了近年来辐射技术在碳纳米管、氧化石墨烯及碳纳米纤维等材料改性及其应用方面的研究进展,总结了这三种纳米碳材料的优异性能及其复合材料在生物医药、能源、智能材料等领域的最新研究进展,分析了辐射改性纳米碳材料的优势,并对今后辐射技术和纳米碳材料相结合的研究方向进行了展望。随着对纳米碳材料辐射改性的研究和产业化的不断深入,分散性能优异的纳米碳材料有望实现大规模低成本的连续批量生产,未来在功能化和高性能化复合材料等领域的应用也将会更加广阔。 相似文献
6.
文章利用扫描电镜(SEM)、透射电镜(TEM)系统观察和研究了乙醇燃烧火焰中合成的具有各种不同形貌特征的一维碳纳米材料。观察发现燃烧产物中除了“空心”碳纳米管和平直“实心”碳纳米纤维以外,还包括锥状、单螺旋型、双螺旋型、带状、节状、疏松状、节状-螺旋混合型、平直-螺旋混合型等形貌特殊的一维碳纳米材料。研究认为影响它们生长的主要因素有:Fe和Ni元素与碳的亲和力的差异、基板预处理、火焰的宽区域和不稳定性等。对火焰中各种形貌一维碳纳米材料的生成机理和过程进行了分析和讨论。 相似文献
7.
一维纳米材料的研究进展 总被引:1,自引:0,他引:1
近年来,一维纳米材料倍受人们的关注,其研究也取得了突破性的进展。本文概述了一维纳米材料的研究进展,详细讨论了其分类、制备方法、表征手段。最后扼要介绍了其在各个领域的最新应用。 相似文献
8.
9.
碳纳米管(CNTs)可以构成水平排列、垂直排列膜以及多种三维结构碳纳米材料.介绍了CNTs构成的二维和三维碳纳米材料的分类,综述了其制备方法和应用的研究进展,探讨了该研究领域需要解决的问题以及今后可能的发展前景. 相似文献
10.
碳纳米管(CNTs)可以构成水平排列、垂直排列膜以及多种三维结构碳纳米材料.介绍了 CNTs构成的二维和三维碳纳米材料的分类,综述了其制备方法和应用的研究进展,探讨了该研究领域需要解决的问题以及今后可能的发展前景. 相似文献
11.
12.
13.
利用“石墨近似”讨论了施加轴向匀强磁场对理想单壁碳纳米管电子结构的影响,建立了相应模型,并采用竹电子紧束缚近似法,对Zigzag型碳管进行了理论分析与计算。计算表明磁场中SWNTs的子能带和磁通量是量子化的,其能带以磁通量子哦为周期,随磁通中作周期性变化,并出现金属一半导体性的周期性转变现象。 相似文献
14.
15.
16.
17.
碳纳米管具有管径小、长径比高的结构以及物理化学性能稳定等优良特性,被认为是真空冷阴极场发射电子源和场发射平板显示理想的阴极材料。加之碳纳米管兼具有机械强度高、韧性好等出众的力学性能,使其成为复合材料的理想添加相,将其与其他材料复合,可以制备出具有更加出众性能的复合材料。近年来有关碳纳米管及其复合材料场发射研究已成为一个备受关注的热点。概述了阴极场发射理论以及与碳纳米管场发射相关的几种场发射物理机制,介绍了碳纳米管复合场发射阴极的研究现状及制备方法,最后对碳纳米管复合阴极场发射的发展前景进行了展望。 相似文献
18.
19.
磁场作用下的金属凝固研究进展 总被引:4,自引:0,他引:4
磁场作用下的金属凝固已成为金属材料基础研究和开发制备新技术的重要领域.综述了交变/旋转磁场、直流磁场作用下金属凝固的研究历史及现状,运用电磁学及金属凝固原理,揭示了磁场对凝固组织形貌及凝固过程产生的影响及主要机制,并对以后的理论研究工作提出了建议. 相似文献