首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sohn JH  Taki Y  Ushio H  Ohshima T 《Lipids》2005,40(2):203-209
A flow injection analysis (FIA) system coupled with a fluorescence detection system using diphenyl-1-pyrenylphosphine (DPPP) was developed as a highly sensitive and reproducible quantitative method of total lipid hydroperoxide analysis. Fluorescence analysis of DPPP oxide generated by the reaction of lipid hydroperoxides with DPPP enabled a quantitative determination of the total amount of lipid hydroperoxides. Use of 1-myristoyl-2-(12-((7-nitro-2-1,3-benzoxadiazol-4-yl)amino) dodecanoyl)-sn-glycero-3-phosphocholine as the internal standard improved the sensitivity and reproducibility of the analysis. Several commercially available edible oils, including soybean oil, rapeseed oil, olive oil, corn oil, canola oil, safflower oil, mixed vegetable oils, cod liver oil, and sardine oil were analyzed by the FIA system for the quantitative determination of total lipid hydroperoxides. The minimal amounts of sample oils required were 50 μg of soybean oil (PV=2.71 meq/kg) and 3 mg of sardine oil (PV=0.38 meq/kg) for a single injection. Thus, sensitivity was sufficient for the detection of a small amount and/or low concentration of hydroperoxides in common edible oils. The recovery of sample oils for the FIA system ranged between 87.2±2.6% and 102±5.1% when PV ranged between 0.38 and 58.8 meq/kg. The CV in the analyses of soybean oil (PV=3.25 meq/kg), cod liver oil (PV=6.71 meq/kg), rapeseed oil (PV=12.3 meq/kg), and sardine oil (PV=63.8 meq/kg) were 4.31, 5.66, 8.27, and 11.2%, respectively, demonstrating sufficient reproducibility of the FIA system for the determination of lipid hydroperoxides. The squared correlation (r 2) between the FIA system and the official AOCS iodometric titration method in a linear regression analysis was estimated at 0.9976 within the range of 0.35−77.8 meq/kg of PV (n=42). Thus, the FIA system provided satisfactory detection limits, recovery, and reproducibility. The FIA system was further applied to evaluate changes in the total amounts of lipid hydroperoxides in fish muscle stored on ice.  相似文献   

2.
The feasibility of applying methods developed by Safety Associates, Inc., to monitor oil degradation products, including malondialdehydes (AldeSafeTM), FFA (FASafeTM), and peroxides (PeroxySafeTM), in fresh and heat-abused deep-fat frying oil was evaluated. Based on performance qualification studies, the AldeSafe method was the most suitable SafTestTM assay for monitoring the quality of frying oil because of its high accuracy, precision, linearity, and reproducibility, and low detection/quantitation limits. A strong correlation (r=0.924) between the AldeSafe method and its counterpart, AOCS Official Method Cd 19-90, also supported the suitability of the SafTest method for monitoring oil quality. Moreover, the FASafe method had a moderately strong relationship with AOCS Official Method Ca 5a-40 (r=0.761). Our studies suggest that this test can be applied for monitoring frying oil; however, certain method performance limitations must be considered for routine analysis purposes. In contrast, the PeroxySafe method probably should not be used to monitor heat-abused oil without further development because of high variability, low accuracy, and low correlation (r=0.062) with the AOCS Official Method Cd 8-53 assay.  相似文献   

3.
Use of near-infrared (NIR) transmittance spectroscopy for rapid determination of the oxidation level in soybean oils (SBO) was investigated, and calibrations were developed for quantitative determination of peroxide value (PV), conjugated diene value (CD), and anisidine value (AV) of SBO. Partial least squares (PLS) regression and forward stepwise multiple linear regression were used to develop calibration models from spectral data in log 1/T, first derivative and second derivative of log 1/T formats for both 1- and 2-mm path lengths. The models were validated by comparing NIR results from independent sample sets to the values obtained by official methods. The spectral region from 1100 to 2200 nm was best for measuring oxidation when using a 2-mm path length. PLS regression using first-derivative spectra gave the best results for PV. For the validation sets, linear relationships were obtained for PV (r=0.99), and CD (r=0.95), compared with accepted reference procedures. However, measurement of AV by NIR was less successful than measurement of the other two indices of oxidation, especially for an external validation sample set. Results obtained in this study indicate that NIR spectroscopy is a useful technique for measuring oxidation in soybean oil.  相似文献   

4.
Peroxidic species in ozonized sunflower oil using different methods as iodometric and ferrous oxidation in xylenol orange (FOX) were measured. The necessary reaction time from two minutes up to 36 hours using iodometric assay in ozonized sunflower oil was determined. Peroxide values achieved maximum values at 24 hours of reaction time. Hydroperoxides content measured by FOX assay and peroxide value determined at two minutes using iodometric assay had a linear relationship (r2 = 98.18%), while, at 24 hours a logarithmic relationship (r2 = 98.39%) was shown. Values of hydroperoxides were lower than peroxides values at 24 hours and represent between 23 and 44% in all samples of ozonized sunflower oil studied.  相似文献   

5.
The present study was aimed at determining the ability of near‐infrared (NIR) spectroscopy to in situ describe fat oxidation kinetics in three different cereal‐based products: salted crackers (20% saturated palm oil and lauric oil, sprayed on surface); healthy crackers (10% unsaturated rapeseed oil, homogeneously distributed inside the product matrix); and moist pasteurised Asian noodles (1.5% unsaturated rapeseed oil, sprayed on surface). Products were stored under accelerated oxidation conditions at 40 °C. Lipid oxidation rates were determined from peroxide value (PV) measurements. We observed no significant changes in PV for the dry crackers (3 meq/kg after 60 days), a slight linear increase in PV for the healthy crackers (40 meq/kg after 60 days), and a rapid increase for the Asian noodles (80 meq/kg after 20 days). The NIR spectra were recorded between 1000 and 2500 nm by using a Fourier Transform NIR spectrometer, using an external probe. Measurements were done directly in situ on the product, on the ground samples, and on the extracted fat phase. The analysis of NIR spectral data by PLS statistical methods demonstrated some correlation trends (R2 = 0.575–0.897; RMSEC = 17–55%) for the products having a significant increase in PV. It was not possible to propose predictive models to calculate the oxidation rate.  相似文献   

6.
Fried foods are frequently served by fast food establishments but the evaluation of the oil used is quite laborious, expensive, and requires a well-structured laboratory with sophisticated equipment. Moreover, p-anisidine, used as the reagent in the traditional test for monitoring the alkenal concentration of frying oils, is carcinogenic. The DiaMed F.A.T.S. kits for the determination of alkenal (AlkalSafe™ STD) and malonaldehyde (AldelSafe™ STD), equivalent to the p-anisidine and TBA tests, respectively, are safe, fast and accurate, using compact equipment and generating fewer residues than the official methods. The results obtained using these kits were compared with those obtained using the official methods for determining alkenal (AOCS Cd 18b-90) and malonaldehyde (AOCS Cd 19b-90), in 20 samples collected from an institutional restaurant. Based on the least squares regression analysis, the AlkalSafe kit results were highly correlated with the p-anisidine values (r = 0.74), but there was a lack of correlation between the results of the AldeSafe™ kit and the TBA test. Both kits were significantly more sensitive than the official methods, as revealed by the results of the Tukey test. Although the TBA values for the samples investigated were minimal, suggesting the inadequacy of the test for monitoring frying oils, the greater sensitivity of the kit makes it a relatively feasible option.  相似文献   

7.
A modification of the AOCS Official Method Ca 5a-40 for determination of free fatty acids (FFA) in 0.3 to 6.0-g samples of refined and crude soybean oil is described. The modified method uses only about 10% of the weight of oil sample, alcohol volume, and alkali strength recommended in the Official Method. Standard solutions of refined and crude soybean oil with FFA concentrations between 0.01 and 75% were prepared by adding known weights of oleic acid. The FFA concentrations, determined from small sample sizes with the modified method, were compared with FFA percentages determined from larger sample sizes with the Official Method. Relationships among determinations obtained by the modified and official methods, for both refined and crude oils, were described by linear functions. The relationship for refined soybean oil had an R 2 value of 0.997 and a slope of 0.99±0.031. The values for crude soybean oil are defined by a line with R 2=0.9996 and a slope of 1.01±0.013.  相似文献   

8.
NIR spectroscopy was used successfully in our laboratory to monitor oxidation levels in vegetable oils. Calibration models were developed to measure PV in both soy and corn oils, using partial least squares (PLS) regression and forward stepwise multiple linear regression, from NIR transmission spectra. PV can be measured successfully in both corn and soy oils using a single calibration. The most successful calibration was based on PLS regression of first derivative spectra. When this calibration was applied to validation sample sets containing equal numbers of corn and soy oil samples, with PV ranging from 0 to 20 meq/kg, a correlation coefficient of 0.99 between titration and NIR values was obtained, with a standard error of prediction equal to 0.72 meq/kg. For both types of oil, changes occurred in the 2068 nm region of the NIR spectra as oxidation levels increased. These changes appear to be associated with the formation of hydroperoxides during oxidation of the oils.  相似文献   

9.
Fifteen milliliters of soybean oil having peroxide value (PV) of 0, 2, 4, 6, 8, or 10 meq/kg oil in a 35 mL serum bottle was sealed air-tight with a Teflon rubber septum and aluminum cap and was stored in a forced-air oven at 50 °C. The oxidative stability of soybean oil was evaluated daily for six days by measuring the headspace oxygen content and volatile compounds in the headspace of a sample bottle by gas chromatography. As the initial PV of the oil increased from 0 to 2, 4, 6, 8 and 10, the headspace oxygen decreased and the volatile compounds increased at p < 0.05. Hydroperoxide accelerated the oxidation of soybean oil. The correlation coefficient (R 2) between the headspace oxygen and the volatile compounds was 0.95. The increase of tertiary butyl hydroquinone (TBHQ) from 0 to 50 ppm for the oil of PV 4 or 8 had a significant effect on the oxidative stability at p < 0.05. The increase from 50 to 100 ppm for the oil of PV 4 or 8 did not significantly increase the stability at p > 0.05. The oxidative stability of PV 8 meq/kg and 50 ppm TBHQ was better than the control with PV 0 and 0 ppm TBHQ at p < 0.05. TBHQ was an effective antioxidant to improve the oxidative stability of soybean oil.  相似文献   

10.
A rapid and sensitive ultraviolet-visible spectrophotometric method for determination of peroxide value (PV) in foods with high carotenoid content (e.g., paprika oleoresin, paprika powder, red palm oil) has been developed. The proposed protocol [modified International Dairy Federation (IDF) method] was established from the IDF Fe(II)-oxidation-based spectrophotometric method, and the main one of the introduced modifications consisted of a clean-up extraction step of pigments before determining the PV by complexing Fe(III) ions with thiocyanate. Fe(II) oxidation time, reaction medium, and Fe(III)-thiocyanate complex formation time were optimized. The modified IDF method was compared with and was validated by iodometric AOAC official method with a good correlation (R 2=0.957) between data obtained by both analytical methods. The high sensitivity of the method allows the use of only about 0.010–0.015 g of sample, with a detection limit of 0.044 mequiv peroxide/kg of sample. Therefore, an improved spectrophotometric method for assessing PV in food lipids with high carotenoid content is now available and can be applied to any kind of sample, independent of oil and pigment content.  相似文献   

11.
A key element of successful development of new soybean cultivars is availability of inexpensive and rapid methods for measurement of FA in seeds. Published research demonstrated applicability of NIR spectroscopy for FA profiling in oilseeds. The objectives of this study were to investigate the applicability of NIR spectroscopy for measurement of FA in whole soybeans and compare performance of calibration methods. Equations were developed using partial least squares (PLS), artificial neural networks (ANN), and support vector machines (SVM) regression methods. Validation results demonstrated that (i) equations for total saturates had the highest predictive ability (r 2=0.91–0.94) and were usable for quality assurance applications, (ii) palmitic acid models (r 2=0.80–0.84) were usable for certain research applications, and (iii) equations for stearic (r 2=0.49–0.68), oleic (r 2=0.76–0.81), linoleic (r 2=0.73–0.76), and linolenic (r 2=0.67–0.74) acids could be used for sample screening. The SVM models produced significantly more accurate predictions than those developed with PLS. ANN calibrations were not different from the other two methods. Reduction in the number of calibration samples reduced predictive ability of all equations. The rate of performance degradation of SVM models with sample reduction was the lowest.  相似文献   

12.
Supercritical fluid extraction is a viable alternative process for extracting oil from olive husk, a residue obtained in the olive oil production. We analyzed the effects of pressure (P) (100–300 bar), temperature (T) (40–60°C), solvent flow (1–1.5 L/min), and particle size (D) (0.30–0.55 mm) on extraction yield, and three oil-quality parameters: acidity (OA), PV, and phosphorus content (PC). A response surface methodology based on the statistical analysis of the experimental data permitted us to obtain mathematical expressions relating the operational variables and parameters studied. At the best extraction condition of the experimental range analyzed (P=300 bar, T=60°C, D=0.30 mm, and solvent flow=1.25 L/min at standard conditions), the oil yield was 80% (w/w) with respect to hexane extraction, whereas the quality parameters OA, PV, and PC were 14% (w/w), 8 meq/kg, and 2.3·10−3% (w/w), respectively. These results were compared to those obtained by hexane Soxhlet extraction. The quality of the supercritical extract was superior, requiring only simple refining. This advantage may result in improved economics of the supercritical process in relation to the conventional extraction with hexane.  相似文献   

13.
A near infrared (NIR) spectroscopic method was developed to measure peroxide value (PV) in crude palm oil (CPO). Calibration standards were prepared by oxidizing CPO in a fermentor at 90°C. A partial least squares (PLS) calibration model for predicting PV was developed based on the NIR spectral region from 1350 to 1480 nm with reference to single-point baseline at 1514 nm. The optimization of calibration factors was guided by the predicted residual error sum of squares test. The standard error of calibration obtained was 0.156 over the analytical range of 2.17–10.28 PV and the correlation coefficient (R 2) was 0.994. The method was validated with an independent set of samples which was prepared in the same manner on a different day. A linear relationship between the American Oil Chemists’ Society and the NIR methods was obtained with R 2 of 0.996 and standard error of performance of 0.17. This study has demonstrated that the prediction of PV in the NIR region is possible. The method developed is rapid, with total analysis time less than 2 min, is environmentally friendly, and its accuracy is generally good for quality control of CPO.  相似文献   

14.
The relative oxidative stability of soybean oil samples containing either thermally degraded β-carotene or lycopene was determined by measuring peroxide value (PV) and headspace oxygen depletion (HOD) every 4 h for 24 h. Sobyean oil samples containing 50 ppm degraded β-carotene that were stored in the dark at 60°C displayed significantly (P<0.01) higher HOD values compared with controls. Lycopene degradation products (50 ppm) in soybean oil significantly (P<0.05) decreased HOD of samples when stored in the dark. PV and HOD values for samples containing 50 ppm of either β-carotene or lycopene degradation products stored under lighted conditions did not differ significantly from controls (P<0.05). However, soybean oil samples containing 50 ppm of unheated, all-trans β-carotene or lycopene stored under light showed significantly lower PV and HOD values than controls (P<0.01). These results indicated that during autoxidation of soybean oil held in the dark, β-carotene thermal degradation products acted as a prooxidant, while thermally degraded lycopene displayed antioxidant activity in similar soybean oil systems. In addition, β-carotene and lycopene degradation products exposed to singlet oxygen oxidation under light did not increase or decrease the oxidative stability of their respective soybean oil samples.  相似文献   

15.
A lesquerella species (Lesquerella fendleri) being investigated as a domestic source of seed oil containing hydroxy fatty acids shows good agronomic properties and is being tested in semi-commercial production.Lesquerella fendleri seeds contain 25% oil, of which 55% is lesquerolic acid (14-hydroxy-cis-11-eicosenoic). Oils produced in pilot-plant quantities by screw press, prepress-solvent extraction and extrusion-solvent extraction processes have been refined in the laboratory by filtering, degumming and bleaching. Two American Oil Chemists’ Society (AOCS) standard bleaching earths and two commercial earths were compared for effectiveness in bleaching these dark, yellow-red, crude lesquerella oils. Free fatty acids (1.3%), iodine value (111), peroxide value (<4 meq/kg), unsaponifiables (1.7%) and hydroxyl value (100) were not significantly affected by degumming and bleaching, but phosphorus levels of 8–85 ppm in the crude oils were reduced to 0.5–1.1 ppm in the degummed and bleached oils. Crude oils had Gardner colors of 14, which were reduced to Gardner 9–11 in the degummed and bleached oil, depending on bleach type and quantity used. AOCS colors in the range of 21–25R 68–71Y were obtained. By including charcoal in the bleaching step, a considerably lighter oil could be obtained (Gardner 7).  相似文献   

16.
The AOCS Official Method Ce 1h-05 was recently approved at the 96th AOCS Annual Meeting (2005) by the Uniform Methods Committee as the official method for determining cis and trans FA in vegetable or non-ruminant fats and oils. A series of experiments was undertaken using a margarine (hydrogenated soybean oil) sample containing approximately 34% total trans FA (28% 18∶1 trans, 6% 18∶2 trans, and 0.2% 18∶3 trans), a low-trans oil (ca. 7% total trans FA), and a proposed system suitability mixture (12∶0, 9c−18∶1, 11c−18;1, 9c,12c,15c−18∶3, 11c−20∶1, and 21∶0) in an effort to evaluate and optimize the separation on the 100-m SP-2560 and CP-Sil 88 flexible fused-silica capillary GC columns recommended for the analysis. Different carrier gases and flow rates were used during the evaluation, which eventually lead to the final conditions to be used for AOCS Official Method Ce 1h-05.  相似文献   

17.
Effects of filtration bleaching on peroxide value (PV), thiobarbituric acid value (TAV) and carbonyl value (CV) of autoxidized soybean oil were investigated by using twenty-three kinds of activated carbon in order to improve oil quality. From the decreases in PV, TAV and CV and from the physical and chemical properties of activated carbons, it was suggested that hydroperoxides, aldehydes and ketones were adsorbed on the acid sites distributed over the surface or within the pores of the activated carbons while the autoxidized soybean oil flowed through the packed column. The residual tocopherols in autoxidized soybean oil and treated soybean oil were determined during storage. The decrease in oxidative stability of treated soybean oil seemed to be caused by elimination ofα-,β-andγ-tocopherols.δ-Tocopherol was chemically more stable thanα-,β- andγ-tocopherols in autoxidized soybean oil.  相似文献   

18.
Encapsulation of CO2-extracted sea buckthorn kernel oil and the stability of the products were investigated. Maltodextrin and an emulsifying starch derivative were used for encapsulation by spray drying. Both shell materials significantly increased the storage stability of sea buckthorn kernel oil, even though in maltodextrin capsules 10% of the total oil was extractable from the surface of the capsule. The cornstarch sodiium octenyl succinate derivative capsules contained essentially no surface oil. After 9 wk storage at controlled conditions (20°C, RH 50%), PV of the unencapsulated oil was above 90 meq/kg, whereas in the encapsulated oils, the PV was still around 20 meq/kg. The PV of the encapsulated oil was dependent on the storage conditions. A small increase in temperature (from 20 to 25–30°C) and a significant increase in humidity (from RH 50 to RH 50–70%) decreased the stability of capsules. This was associated with the physical state of the microcapsule matrix and may be linked with glass transition of the wall polymers.  相似文献   

19.
Analysis of used frying oil samples by high performance liquid chromatography–size exclusion chromatography (HPLC–SEC or HPSEC) was compared to AOCS Official Method Cd 20-91 (silica gel column chromatography) for the purpose of developing a rapid analysis of total polar compounds (TPC). In a direct comparison of the two analytical methods using four different sets of used frying oils (21 total oil samples) ranging from fresh to discard quality (4.3 to 35.4% TPC by column chromatography), the weight percent total polar compounds (%TPC) determined by HPLC–SEC averaged 0.71% higher than the values by silica gel column chromatography. Reproducibility of the HPLC–SEC method of s r = 0.30 and RSDr% = 1.22 compares to the variability of s r = 0.29 and RSDr = 1.3 for samples of approximately the same %TPC, reported in AOCS Method Cd 20-91. Because the rapid method does not separate pure (non-polar) triacylglycerol (TAG) and polar, oxidized TAG (OX-TAG), a high concentration of OX-TAG will quantitatively affect the results. This places practical limits on the types of studies to which the method may be applied if a separate analysis for the OX-TAG is not performed. Advantages of the HPLC–SEC method include the following. It uses about 75% less solvent than standard column chromatography methods for determination of %TPC. This HPLC–SEC method is very similar to AOCS Official Method Cd 22-91, and thus, also separates and quantifies polymerized triacylglycerols. The HPLC–SEC method determines both TAG polymer concentration and %TPC of used frying oils in about 1 h.  相似文献   

20.
The objective of this study was to identify the physical properties of an interesterified soybean oil (EIESOY), containing 45% saturated fatty acids (SFA), that correlates with high oil binding capacity (OBC) and low oil loss (OL). In this study, three EIESOY samples were analyzed; a 100% sample, a 50% sample diluted with 50% soybean oil, and a 20% sample diluted with 80% soybean oil. All samples were crystallized using fast (7.78°C/min) and slow (0.1°C/min) cooling rates as well as with and without high-intensity ultrasound (HIU, 20 kHz). The 100%, 50%, and 20% samples were crystallized at 38.5, 27.0, and 22.0°C, respectively. HIU was applied at the onset of crystallization and all samples were allowed to crystallize isothermally for 90 min. After 90 min, physical properties such as crystal microstructure, hardness, solid fat content (SFC), elasticity, and melting behavior were evaluated. Physical properties were also measured after storage for 48 h at 22 and 5°C. Results show that OBC was positively correlated with hardness, G′, and SFC after 48 h (r = 0.738, p = 0.006; r = 0.639, p = 0.025; r = 0.695, p = 0.012; respectively), OL was negatively correlated with hardness after 48 h (r = −0.696, p < 0.001), G′ after 90 min and 48 h (r = −0.704, p < 0.001; r = −0.590, p = 0.002), and SFC after 90 min and 48 h (r = −0.722, p < 0.001; r = −0.788, p < 0.001). Neither OBC nor OL were correlated with crystal diameter or the number of crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号