首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of Mn-doping on TSDC (Thermally Stimulated Depolarization Current) and electrical degradation of BaTiO3 have been investigated. TSDCs of un-doped BaTiO3 and Ba(Ti1−x Mnx)O3−δ exhibited the three sharp TSDC peaks around phase transition temperatures. TSDC of Ba(Ti0.995Mg0.005)O2.995 increased gradually from 50C and this anomalous depolarization current kept going up well above the Curie temperature (∼130C). TSDCs of un-doped BaTiO3 and Ba(Ti0.995Mn0.005)O3−δ decreased in the temperature range above the Curie point, whereas a slight increase in TSDC was confirmed at the specimen of Ba(Ti0.99Mn0.01)O3−δ. TSDCs of Ba(Ti0.995−y Mg0.005Mny)O3−δ (y = 0.005, 0.01) were lower than that of Ba(Ti0.995Mg0.005)O2.995.  相似文献   

2.
The electrical conductivity of BaPr1−x GdxO3−δ has been characterized by means of the four-point van der Pauw technique at 200–1100 °C as a function of pO2 and pH2O. The contributions from ionic charge carriers were investigated by the EMF of concentration cells and the H+/D+ isotope effect on the total conductivity. BaPr1−x Gd x O3−δ is predominately a p-type electronic conductor under oxidizing conditions, while ionic conduction is barely measurable. Gd(III) substituted for Pr(IV) is charge compensated mainly by electron holes, with protons and oxygen vacancies contributing significantly but as minority defects only at low temperatures (wet conditions) and at high temperatures, respectively. The conductivity behaviour has been modelled under these assumptions to extract thermodynamic parameters for the defect reactions at play. The practical use of this material is limited by its poor chemical stability.  相似文献   

3.
Electrical properties and sintering behaviors of (1 − x)Pb(Zr0.5Ti0.5)O3-xPb(Cu0.33Nb0.67)O3 ((1 − x)PZT-xPCN, 0.04 ≤ x ≤ 0.32) ceramics were investigated as a function of PCN content and sintering temperature. For the specimens sintered at 1050C for 2 h, a single phase of perovskite structure was obtained up to x = 0.16, and the pyrochlore phase, Pb2Nb2O7 was detected for further substitution. The dielectric constant (ε r), electromechanical coupling factor (Kp) and the piezoelectric coefficient (d 33) increased up to x = 0.08 and then decreased. These results were due to the coexistence of tetragonal and rhombohedral phases in the composition of x = 0.08. With an increasing of PCN content, Curie temperature (Tc) decreased and the dielectric loss (tanδ) increased. Typically, εr of 1636, Kp of 64% and d33 of 473pC/N were obtained for the 0.92PZT-0.08PCN ceramics sintered at 950C for 2 h.  相似文献   

4.
The preparation and oxygen permeation properties of the (Ce0.8Pr0.2)O2−δ − x vol% MnFe2O4 composites, where x = 0 to 35, have been investigated. The samples were prepared by the Pechini method. In the case of Ce0.8Pr0.2O2−δ, an oxygen flux density of 6 μmol⋅cm−2⋅s−1 (L = 0.0247 cm) and the maximum methane conversion of 50% were attained at 1000C. Unlike composites consisting of Gd-doped CeO2 and MnFe2O4, the oxygen permeability of the (Ce0.8Pr0.2)O2−δ – x vol% MnFe2O4 composites was almost constant regardless of the volume fraction of MnFe2O4; however, the optimum volume fraction of MnFe2O4 was determined to be 5 to 25 in the context of the chemical and mechanical stabilities under methane conversion atmosphere. In addition, the surface modification of the (Ce0.8Gd0.2)O2−δ – 15 vol% MnFe2O4 composite was performed by using the FePt nanoparticles. The catalyst loading of 2.8 mg/cm2 on the both side of the 0.3 mm-thick (Ce0.8Gd0.2)O2−δ – 15vol% MnFe2O4 composite increased the oxygen flux density from 0.30 to 0.76 μmol⋅cm−2⋅s−1 in the case of He/air gradients; however, the effect seems to be reduced in the case of high oxygen flux density caused by a large pO2 gradient. Moreover, the Langmuir-Blodgett film of the FePt nanoparticles were successfully prepared on the tape-cast (Ce0.8Gd0.2)O2−δ – 15vol% MnFe2O4 composite. Hydrophobic treatments for the surface of the composite were crucial to achieve high transfer ratio for the deposition of the LB film.  相似文献   

5.
Synthesis and sintering properties of the (La0.8Ca0.2−x Sr x )CrO3 samples doped by two alkaline earth metals in comparison to the doped only by one alkaline earth metal were evaluated by phase analysis, sintering properties, thermal expansion behaviors, and electrical conductivity. The sintered (La0.8Ca0.2−x Sr x )CrO3 (x = 0, 0.05, and 0.1) and (La0.8Ca0.2−x Sr x )CrO3 (x = 0.2) were found to have orthorhombic and rhombohedral symmetries, respectively. Relative density of the (La0.8Sr0.2)CrO3 sample sintered at 1500C for 5 h was lower than that of the (La0.8Ca0.2−x Sr x )CrO3 (x = 0, 0.05, and 0.1) sample. TECs of the (La0.8Ca0.2−x Sr x )CrO3 (x = 0, 0.05, 0.1, and 0.2) in air were 11 × 10−6/C, 11.2 × 10−6/C, 11.2 × 10−6/C, and 11.3 × 10−6/C, respectively. The electric conductivity of the (La0.8Ca0.2−x Sr x )CrO3 sample was determined.  相似文献   

6.
The electrical conductivity of new solid electrolytes Eu2.096Hf1.904O6.952 and Gd2Hf2O7 have been compared with those for different pyrochlores including titanates and zirconates Ln2+xМ2−xO7−δ (Ln = Sm-Lu; M = Ti, Zr; x = 0−0.81). Impedance spectroscopy data demonstrate that Eu2.096Hf1.904O6.952 and Gd2Hf2O7 synthesized from mechanically activated oxides have high ionic conductivity, comparable to that of their zirconate analogues. The bulk and grain-boundary components of conductivity in Sm2.096Hf1.904O6.952synth = 1600oС), Eu2.096Hf1.904O6.952 and Gd2Hf2O7synth = 1670oС) have been determined. The highest bulk conductivity is offered by the disordered pyrochlores prepared at 1600oC and 1670oC: ~1.5 × 10−4 S/cm for Sm2.096Hf1.904O6.952, 5 × 10−3 S/cm for Eu2.096Hf1.904O6.952 and 3 × 10−3 S/cm for Gd2Hf2O7 at 780oС, respectively. The conductivity of the fluorite-like phases at the phase boundaries of the Ln2+xМ2−xO7−δ (Ln = Eu, Gd; M = Zr, Hf; x ~ 0.286) solid solutions, as well as that of the high-temperature fluorite-like phases Ln2+xМ2−xO7−δ (Ln = Eu, Gd; M = Zr, Hf; x = 0−0.286), is lower than the conductivity of the disordered pyrochlores Ln2+xМ2−xO7−δ (Ln = Eu, Gd; M = Zr, Hf; x = 0−0.096).  相似文献   

7.
Co was added to see its effect on the electrical conductivity of Sr- and Mg-doped LaAlO3 (La0.9Sr0.1 Al0.9Mg0.1O3, LSAM). Electrical conductivities of La0.9Sr0.1(Al0.9Mg0.1)1− xCoxO3 (LSAMC) for x = 0–0.20 were measured using 2-probe a.c. and 4-probe d.c. method at temperature between 300 and 1300C in air, and as a function of Po 2 (1–10−15 atm) at 1200C. Electrical conductivities in air increased with increasing Co content, while their activation energy decreased. From the impedance spectroscopy analysis, it was found that both the grain and the grain boundary conductivities of LSAMC samples increased rapidly with Co-addition. LSAMC samples were oxygen ion conductors in low Po2 and mixed conductors in high Po 2 up to x = 0.1 just like LSAM. With Co-doping, p-type conductivities increased, however, ionic conductivities remained nearly constant.  相似文献   

8.
Ce0.8Gd0.2 – yPryO2 – (y = 0–0.05) and Ce0.8Gd0.2 – ySmyO2 – (y = 0–0.05) SOFC electrolyte materials were prepared using a reverse-strike co-precipitation method. The resulting powders were characterized using X-ray diffraction, Raman spectroscopy and electrochemical methods. XRD confirmed a single fluorite phase for all compositions. Increased Pr and Sm dopant level was found to cause a shift in the peak positions to slightly higher d-spacings with respect to pure CeO2. The experimental lattice parameter was calculated using the peak positions determined from the XRD patterns. Raman spectra, for all dopant levels, showed two distinctive band features, namely a band at ca. 460 cm– 1 and a broader, weaker band at ca. 570 cm– 1. As the proportion of praseodymia dopant is increased, the oxygen vacancy band shifts to a slightly lower wavenumber and decreases in relative intensity to the F2g band. However, an anomaly occurs at the 1% dopant level; the oxygen vacancy band having a very low relative intensity. The conductivity was determined using AC—impedance spectroscopy, and it was found that for praseodymia, a maximum is observed at y = 0.015, while for samaria the maximum is observed at y = 0.01. It is also observed that the ionic conductivity for the samaria doped samples are lower than those of the praseodymia doped samples.  相似文献   

9.
Ultra fine rutile powders (below 50 nm) were prepared via the sol-gel process and bulk type TiO2 specimens were fabricated using spark plasma sintering (SPS). The TiO2 specimen sintered at a low temperature (720C) exhibited a highly relative density (97%) and a nano-sized grain structure (200 nm). Dielectric properties of spark plasma sintered TiO2 specimens including dielectric constants (k) and losses (tan δ) were measured. The TiO2 specimen, obtained by SPS, showed a high dielectric constant (∼780) and a low tan δ (∼0.005), and a relaxation behavior at 1 MHz. After the subsequent annealing process of the TiO2 specimen in O2 flow, the dielectric constants remarkably decreased (k = 100s). These dielectric properties of nanocrystalline TiO2 specimens prepared by SPS were discussed in terms of space charges produced by the reduction of Ti4+ ions and crystallographic orientations of grains.  相似文献   

10.
The electric mechanisms of perovskite-type LaMnO3 was investigated with B-site substitution in this paper. Samples of La(TixMn1 − x)O3 (0.1 ≰ x ≰ 0.7) were sintered at different temperature. The voltage-temperature (V-T) curves of the samples were tested from room temperature (25C) to 300C, then the electric properties were measured and analyzed. The experimental results showed that the resistivity-temperature (ρ-T) curves of the samples matched NTC characteristic. The resistivity increased slightly with the increase of Ti amount as x was less than 0.5, however, it rose greatly after x exceeded 0.5; The sintering temperatures have a little influence on the resistivity, except for the sample with x = 0.7.  相似文献   

11.
P-type thermoelectric Bi0.5Sb1.5Te3 compounds were prepared by the spark plasma sintering method with temperature ranges of 300–420C and powder sizes of ∼75 μm, 76–150 μm, 151–250 μm. As the sintering temperature increased, the electrical resistivity and thermal conductivity of the compound were greatly changed due to an increase in the relative density. The Seebeck coefficient and electrical resistivity were varied largely with decreasing the powder size. Subsequently, the compound sintered at 380C with the powders of ∼75 μm showed the maximum figure-of-merit of 2.65 × 10−3K−1 and the bending strength of 73 MPa.  相似文献   

12.
BaO ⋅ Nd2O3 ⋅ 4TiO2—based ceramics were prepared by the mixed oxide route. Specimens were sintered at temperatures in the range 1200–1450C. Microstructures were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM); microwave dielectric properties were determined at 3 GHz by the Hakki and Coleman method. Product densities were at least 95% theoretical. The addition of up to 1 wt% Al2O3 to the starting mixtures reduced the sintering temperatures by at least 100C. Incorporation of small levels of Al into the structure (initially Ti sites) led to an increase in Q × f values, from 6200 to 7000 GHz, a decrease in relative permittivity (εr) from 88 to 78, and moved the temperature coefficient of resonant frequency (τf) towards zero. The addition of 0.5 wt% Al2O3 with 8 wt% Bi2O3 improved densification, increased both εr (to 88) and Q× f (to 8000 GHz) and moved τf closer to zero. Ceramics in the system (1 − x)BaO ⋅ Nd2O3 ⋅ 4TiO2 + xBaO ⋅ Al2O3 ⋅ 4TiO2 exhibited very limited solid solubility. The end member BaO ⋅ Al2O3 ⋅ 4TiO2 was tetragonal in structure with the following dielectric properties: εr = 35; Q× f = 5000 GHz; τf = −15ppm/C. Microstructures of the mixed Nd-Al compositions contained two distinct phases, Nd-rich needle-like grains and large Al-rich, lath-shaped grains. Products with near zero τf were achieved at compositions of approximately 0.14BaO ⋅ Nd2O3 ⋅ 4TiO2 + 0.86BaO ⋅ Al2O3 ⋅ 4TiO2, where Q× f = 8200 GHz and εr = 71.  相似文献   

13.
The effect of the addition of glass on the densification, low temperature sintering, and microwave dielectric properties of the Ca[(Li1/3Nb2/3)1−x Tix]O3−δ(CLNT) was investigated. Addition of glass (B2O3-ZnO-SiO2-PbO system) improved the densification and reduced the sintering temperature from 1150C to 900C of Ca[(Li1/3Nb2/3)1−x -Tix]O3−δ microwave dielectric ceramics. As increasing glass contents from 10 wt% to 15 wt%, the dielectric constants (εr) and bulk density were increased. The quality factor (Q⋅f0), however, was decreased slightly. The temperature coefficients of the resonant frequency (τf) shifted positive value as increasing glass contents over Ti content is 0.2 mol. The dielectric properties of Ca[(Li1/3Nb2/3)0.75Ti0.25]O3−δ with 10 wt% glass sintered at 900C for 3 h were εr = 40 Q·f0 = 11500 GHz, τf = 8, ppm/°C. The relationship between the microstructure and dielectric properties of ceramics was studied by X-ray diffraction (XRD), and scanning electron microscope (SEM).  相似文献   

14.
Ceramics of 0.2CaTiO3-0.8Li0.5Nd0.5TiO3) have been prepared by the mixed oxide route using additions of Bi2O3-2TiO2 (up to 15 wt%). Powders were calcined 1100C; cylindrical specimens were fired at temperatures in the range 1250–1325C. Sintered products were typically 95% dense. The microstructures were dominated by angular grains 1–2 μm in size. With increasing levels of Bi2O3-2TiO2 additions, needle and lath shaped second phases developed. For Bi2Ti2O7 additions up to 5 wt%, the relative permittivity increased from 95 to 131, the product of dielectric Q value and measurement frequency increased from 2150 to 2450 GHz and the temperature coefficient of resonant frequency (τ f ) increased from −28pp/C to +22pp/C. A product with temperature stable τ f could be obtained at ∼2 wt% Bi2Ti2O7 additions. For high levels of additives, there is minimal change in relative permittivity, the Qxf values degrade and τ f becomes increasingly negative.  相似文献   

15.
Three primary differences between BNT- and PZT-based ceramics were analyzed from the composition and the active component of the materials. Based on the analysis the authors’ group developed the new idea of the design of the multiple complex in the A-site ions of BNT compounds. (Bi0.5Na0.5)2+, Bi3+ and Na+ in the ABO3 structure are defined as A-site, A1-site and A2-site ions, respectively, and A, A1 and A2-site ions can be simultaneously or singly substituted partially by alkaline-earth metal ions, metal ions with +3 valence and metal ions with +1 valence, respectively. Under this consideration, Several new systems of Bi0.5Na0.5TiO3 (abbreviated as BNT)-based lead-free piezoelectric ceramics were proposed. These ceramics can be prepared by conventional ceramic techniques and have excellent piezoelectric performance. Among these materials, Bi0.5(Na1−xy K x Li y )0.5TiO3 possesses higher piezoelectric constant (d 33 = 230 pC/N), higher electromechanical couple factor (k p = 0.40), larger remanent polarization (P r = 38.9 μC/cm2) and a better P-E hysteresis loop until about 200C. This work was supported by the projects of NSFC (50410179), (50572066), and (59972020), and NAMMC (2001-AA325060).  相似文献   

16.
Potentiometric CO2 sensors were fabricated using a NASICON (Na1+x Zr2SixP3−x O12) thick film and auxiliary layers. The powder of a precursor of NASICON with high purity was synthesized using the sol-gel method. Using the NASICON paste, an electrolyte was prepared on the alumina substrate through screen printing and then sintered at 1000C for 4 h. In the present study, as new auxiliary phases, a series of Na2CO3-CaCO3 system was deposited on the Pt sensing electrode. The electromotive force (EMF) values were found to be linearly dependent on the logarithm of the CO2 concentration in the range of 1000–10000 ppm. The device to which Na2CO3-CaCO3 (1:2) was attached showed good sensing properties at low temperatures.  相似文献   

17.
Ni-Cu-Zn ferrites of composition Ni1 − xyCuyZnxFe2O4 with 0.4 ≰ x ≰ 0.6 and 0 ≰ y ≰ 0.25 were prepared by standard ceramic processing routes. The density of samples sintered at 900^∘C increases with copper concentration y. Dilatometry reveals a significant decrease of the temperature of maximum shrinkage with y. The permeability has maximum values of μ = 500–1000 for x = 0.6. The Curie temperature is sensitive to composition and changes form about 150^∘C for x = 0.6 to Tc > 250^∘C for x = 0.4, almost independent on the Cu-content. A small iron deficiency in Ni0.20Cu0.20Zn0.60 + zFe2 − zO4 − (z/2) with 0 ≰ z ≰ 0.06 significantly enhances the density of samples sintered at 900^∘C. The maximum shrinkage rate is shifted to T < 900C. These compositions are therefore appropriate for application in low temperature co-firing processes. The permeability is reduced with z, hence a small z = 0.02 seems to be the optimum ferrite composition for high sintering activity and permeability.  相似文献   

18.
The effect of B2O3 and CuO on the sintering temperature and microwave dielectric properties of BaTi4O9 ceramics was investigated. The BaTi4O9 ceramics were able to be sintered at 975C when B2O3 was added. This decrease in the sintering temperature of the BaTi4O9 ceramics upon the addition of B2O3 is attributed to the formation of BaB2O4 second phase whose melting temperature is around 900C. The B2O3 added BaTi4O9 ceramics alone were not sintered below 975C, but were sintered at 875C when CuO was added. The formation of BaCu(B2O5) second phase could be responsible for the decrease in the sintering temperature of the CuO and B2O3 added BaTi4O9 ceramics. The BaTi4O9 ceramics containing 2.0 mol% B2O3 and 5.0 mol% CuO sintered at 900C for 2 h have good microwave dielectric properties of εr = 36.3, Q× f = 30,500 GHz and τf = 28.1 ppm/C  相似文献   

19.
The BaxSr1 − x TiO3 ferroelectric ceramics with magnesium (BSM) and neodymium (BSN) additives were studied. Measurements were made of tunability, dielectric losses (tan δ), leakage currents, the correlations between current-voltage I(U) and capacitance-voltage C(U) characteristics. I(U) characteristics of high quality BSM ceramics have four regions: Ohmic, where the conductivity is linear; the horizontal region (or negative differential resistivity); the exponential dependence; and the vertical current enhancement. These BSM samples (∼20% Mg additives) were distinguished by highest breakdown strength (more than 1000 V), low tan δ (less than 10− 3 at 1 MHz) and high tunability (up to 10% at E max∼2 V/μm).  相似文献   

20.
LiNi0.80Co0.20− x Al x O2 samples (x = 0.025, 0.050 and 0.100) were prepared by a solid-state reaction at 725C for 24 h from LiOH⋅H2O, Ni2O3, Co2O3 and Al(OH)3 under oxygen flow. LiNiO2 simultaneously doped by Co-Al has been tried to improve the cathode performance. The results showed that substitution of optimum amount Al and Co at the Ni-site in LiNiO2 improved cycling performance. As a consequence, LiNi0.80Co0.15Al0.05O2 has 178.2 mAh/g of the first discharge capacity and 174.0 mAh/g after 10 cycles. Differential capacity vs. voltage curves indicated that the Co-Al co-doped LiNiO2 showed suppression of the phase transitions compared with pure LiNiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号