首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A series of azo functionalized diols were synthesized through diazotization which involves the reaction of amine with phenol and 2,6‐dimethyl phenol. Four different amines have been used to prepare five bisphenols. These bisphenols were converted to their corresponding cyanate esters by treatment with cyanogen bromide (BrCN) in the presence of triethylamine (Et3N). The chemical structures of the prepared compounds were characterized with Fourier Transform Infrared, 1H‐NMR, 13C‐NMR spectroscopy, and elemental analysis. Dynamic curing behavior was investigated using differential scanning calorimetry. The maximum curing temperature of these cyanate esters are in the range of (186–208°C). Tg values of the polycyanurate networks are in the range of 245–276°C. The thermal properties of cured cyanate ester were studied at a heating rate of 10°C min?1 in N2 atmosphere. The polymers showed excellent thermal stability (T10 was found to be in the range 405–438°C) and the percentage of char yield at 800°C were found to be 30–49. The flame retardancy of the cyanate ester resins have been studied using limited oxygen index value which is in the range of 29.5–37.1 at 800°C. POLYM. ENG. SCI., 55:47–53, 2015. © 2014 Society of Plastics Engineers  相似文献   

2.
A series of bisphenols containing ether linkage were prepared from halo phenol/dihalo compound and dihydroxy compounds in the presence of K2CO3. The bisphenols were transformed to cyanate esters by treatment with cyanogen bromide using triethyl amine catalyst. The structure of all the five bisphenols and the cyanate esters were structurally confirmed by FT-IR, 1H-NMR and 13C-NMR spectral methods and elemental analysis. The cyanate esters were cured at 100 °C (30 min) → 150 °C (30 min) → 200 °C (60 min) → 250 °C (3 hr). The thermal properties of the cured resins were studied by DSC and TGA. DSC analysis shows that these cyanate esters exhibit T g in the range of 203–234 °C. The CE(c) has the highest glass transition temperature. The cyanate ester CE(e) shows the lowest T g which is due to its asymmetric structure. The initial degradation temperature of the cured resins was found to be in the range of 324–336 °C. The Limiting Oxygen Index (LOI) value, determined by Van Krevelen’s equation, is in the range of 35.5–38.7.  相似文献   

3.
Several aromatic diols bearing amino benzyl linkage in the main chain have been synthesized through high yield Betti reaction, which involves the reaction of an aldehyde with p-amino phenol and 8-hydroxy quinoline. Five different aldehydes have been used to prepare five new bisphenols. These bisphenols were converted to their corresponding cyanate esters by the treatment of cyanogen bromide in the presence of triethyl amine. The structures of the diols and dicyanate esters were confirmed by FT-IR, 1H-NMR, 13C-NMR spectral studies and elemental analysis. The cyclotrimerization reactions of cyanate esters have been studied by differential scanning calorimetry (DSC). The maximum curing temperatures of these cyanate esters are in the range of 186-201oC. Tgvalues of the polycyanurate networks are above 270oC. Thermogravimetric analysis (TGA) shows that the 10% weight loss of all the cured cyanate esters is above 400oC in N2 atmosphere. The char yield is in the range of 66-73%. The flame retardancy of the cyanate ester resins have been studied using Limiting Oxygen Index (LOI) value which is in the range of 43.9-46.7% at 700oC.  相似文献   

4.
The bisphenol‐containing 4,4′‐biphenylene moiety was prepared by the reaction of 4,4′‐bis(methoxymethyl) biphenyl with phenol in the presence of p‐toluenesulfonic acid. The bisphenol was end‐capped with the cyanate moiety by reacting with cyanogen chloride and triethylamine in dichloromethane. Their structures were confirmed by Fourier transform infrared spectroscopy, 1H‐NMR, and elemental analysis. Thermal behaviors of cured resin were studied by differential scanning calorimetry, dynamic mechanical analysis, and TGA. The flame retardancy of cured resin was evaluated by limiting oxygen index (LOI) and vertical burning test (UL‐94 test). Because of the incorporation of rigid 4,4′‐biphenylene moiety, the cyanate ester (CE) resin shows good thermal stability (Tg is 256°C, the 5% degradation temperature is 442°C, and char yield at 800°C is 64.4%). The LOI value of the CE resin is 42.5, and the UL‐94 rating reaches V‐0. Moreover, the CE resin shows excellent dielectric property (dielectric constant, 2.94 at 1 GHz and loss dissipation factor, 0.0037 at 1 GHz) and water resistance (1.08% immersed at boiling water for 100 h). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Cyanate esters are a class of thermal resistant polymers widely used as thermal resistant and electrical insulating materials for electric devices and structural composite applications. In this article, the effect of 2,2′‐diallyl bisphenol A (DBA) on catalyzing the thermal curing of cyanate ester resins was studied. The curing behavior, thermal resistance, and thermal mechanical properties of these DBA catalyzed cyanate ester resins were characterized. The results show that DBA is especially suitable for catalyzing the polymerization of the novolac cyanate ester resin (HF‐5), as it acts as both the curing catalyst through depressing the exothermic peak temperature (Texo) by nearly 100°C and the toughening agent of the novolac cyanate ester resin by slightly reducing the elastic modulus at the glassy state. The thermogravimetric analysis and dynamic mechanical thermal analysis show that the 5 wt % DBA‐catalyzed novolac cyanate ester resin exhibits good thermal resistance with Td5 of 410°C and the char yield at 900°C of 58% and can retain its mechanical strength up to 250°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1775–1786, 2006  相似文献   

6.
A new class of copoly(ether-carbonate)s was synthesized using a melt polycondensation reaction of the bis(hydroxyethyl ether) of bisphenol A with bisphenols and diphenyl carbonate. Copolymers with a wide range of Tg values (62–140°C) were obtained. The copolymer structures were established by 1H NMR, 13C NMR and FTIR investigations. © 1998 Society of Chemical Industry  相似文献   

7.
Two bisphenols, viz., 4,4′‐[1‐(2‐naphthalenyl)ethylidene]bisphenol and 4,4′‐[1‐(2‐naphthalenyl) ethylidene]bis‐3‐methylphenol were prepared by condensation of commercially available 2‐acetonaphthanone with phenol and o‐cresol, respectively. A series of new aromatic polyesters containing pendent naphthyl units was synthesized by phase‐transfer‐catalyzed interfacial polycondensation of these bisphenols with isophthaloyl chloride, terephthaloyl chloride, and a mixture of isophthaloyl chloride/terephthaloyl chloride (50 : 50 mol %). Inherent viscosities of polyesters were in the range 0.83–1.76 dL g−1, while number average molecular weights (Mn) were in the range 61,000–235,000 g mol−1. Polyesters were readily soluble in organic solvents such as dichloromethane, chloroform, tetrahydrofuran, m‐cresol, pyridine, N,N‐dimethylformamide, N,N‐dimethylacetamide, and 1‐methyl‐2‐pyrrolidinone at room temperature. Tough, transparent, and flexible films were cast from a solution of polyesters in chloroform. X‐Ray diffraction measurements displayed a broad halo at 2θ ≅ 19° indicating the amorphous nature of polyesters. Glass transition temperatures of polyesters were in the range 209–259°C. The temperature at 10% weight loss (T10), determined by TGA in nitrogen atmosphere, of polyesters was in the range 435–500°C indicating their good thermal stability. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Hyperbranched poly(silyl ester)s were synthesized via the A2 + B4 route by the polycondensation reaction. The solid poly(silyl ester) was obtained by the reaction of di‐tert‐butyl adipate and 1,3‐tetramethyl‐1,3‐bis‐β(methyl‐dicholorosilyl)ethyl disiloxane. The oligomers with tert‐butyl terminal groups were obtained via the A2 + B2 route by the reaction of 1,5‐dichloro‐1,1,5,5‐tetramethyl‐3,3‐diphenyl‐trisi1oxane with excess amount of di‐tert‐butyl adipate. The viscous fluid and soft solid poly(silyl ester)s were obtained by the reaction of the oligomers as big monomers with 1,3‐tetramethyl‐1,3‐bis‐β(methyl‐dicholorosilyl)ethyl disiloxane. The polymers were characterized by 1H NMR, IR, and UV spectroscopies, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The 1H NMR and IR analysis proved the existence of the branched structures in the polymers. The glass transition temperatures (Tg's) of the viscous fluid and soft solid polymers were below room temperature. The Tg of the solid poly(silyl ester) was not found below room temperature but a temperature for the transition in the liquid crystalline phase was found at 42°C. Thermal decomposition of the soft solid and solid poly(silyl ester)s started at about 130°C and for the others it started at about 200°C. The obtained hyperbranched polymers did not decompose completely at 700°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3430–3436, 2006  相似文献   

9.
The oxetane‐modified polysiloxane (Oxe‐PSiO) was synthesized via the partial hydrolysis/condensation of tetraethyl orthosilicate (TEOS) and then transesterification reaction with 3‐ethyl‐3‐(hydroxymethyl)oxetane (EHO), and characterized by FT‐IR, 1H NMR, 13C NMR, and 29Si NMR spectroscopy. Using the water/TEOS molar ratios of 0.8–1.2, the number‐average molecular weights and polydispersity indices were obtained by GPC to range from 1.013 to 2.716 g mol?1 and around 2.0, respectively. The viscosity of Oxe‐PSiO prepared from the water/TEOS molar ratio of 1.2 sharply increased to 177,545 cps from 438 cps of that from the molar ratio of 0.8. A series of cationic UV‐curable formulations were prepared by blending the Oxe‐PSiO synthesized with the water/TEOS molar ratio of 1.0 into an commercial oxetane‐based resin, 3,3′‐[oxydi(methylene)]bis(3‐ethyloxetane), in different weight ratios. The photopolymerization kinetics studied by photo‐DSC in the presence of triphenylsulphonium hexafluoroantimonate as a cationic photoinitiator showed that both the maximum photopolymerization rate and final oxetane conversion in the cured film decreased with increasing Oxe‐PSiO loading mainly due to the sharp increase in viscosity. The DMTA and DSC results both indicated the improvement in thermal stability, showing 12 and 13.4°C, respectively, higher Tg for the cured film with 50 wt % Oxe‐PSiO loading compared with the pure polymer. Moreover, the temperatures (T10% and T50%) at the weight loss of 10 and 50% and final char yields measured by TGA increased with increasing Oxe‐PSiO content. After adding 50 wt % Oxe‐PSiO, compared with the pure polymer the T10% increased from 349 to 361°C, while the T50% increased from 409 to 424°C, and with a char yield increase of 8.2% at 800°C. In addition, its greatly increased crosslinking density due to the formation of silica network resulted in the enhancement in pencil hardness from B of the pure polymer to 2H grade. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Vinyl‐addition polymerization of norbornene was accomplished by two novel dinuclear diimine nickel dichloride complexes in combination with methylaluminoxane (MAO). The activities were moderate. The catalyst structure, Al/Ni molar ratio, solvents, and polymerization temperature all affected the catalytic activities. The obtained polynorbornenes were characterized by 1H‐NMR, 13C‐NMR, FTIR, DSC, WAXD, and intrinsic viscosity measurements. The vinyl‐addition polymers were amorphous but with a short‐range order and high packing density. The polynorbornenes showed glass transition temperatures (Tg) above 240°C and decomposed above 400°C. The catalyst structure and polymerization conditions have effects on the molecular weight and the microstructure of the polymers. The nickel complex with bulkier substituents in the ligand produced polynorbornene with a higher packing density and higher regularity and, therefore, with higher Tg. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3273–3278, 2003  相似文献   

11.
Four cyclotriphosphazene‐based benzoxazine monomers (I, II, III, and IV) with relatively high molecular weight were synthesized by a nucleophilic substitution reaction, and their chemical structures were confirmed by 1H‐NMR and 31P‐NMR. A new term, oxazine value (OV, similar to epoxy value), was first proposed to explain the structure–property relationship of the cured polymers. The polymerization behaviors of the four monomers were studied by differential scanning calorimetry and Fourier transform infrared spectroscopy. The maximum exothermic peaks of the four monomers are in the range 244–248 °C. All monomers possess a wide processing window despite their high molecular weight. The thermal stability, glass‐transition temperature (Tg), and mechanical properties of each cured polymer were studied by thermogravimetric analysis and dynamic mechanical thermal analysis. The char yield at 850 °C, Tg, and storage moduli of PIV (polybenzoxazine obtained from monomer IV) are 60.0%, 218 °C, and 9.0 GPa, respectively. The surface property and humidity absorption character of the cured polybenzoxazines were also studied. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44453.  相似文献   

12.
Three novel polyimides (PIs) having pendent 4‐(quinolin‐8‐yloxy) aniline group were prepared by polycondensation of a new diamine with commercially available tetracarboxylic dianhydrides, such as pyromellitic dianhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and bicyclo[2.2.2]‐oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride. These PIs were characterized by FTIR, 1H NMR, and elemental analysis; they had high yields with inherent viscosities in the range of 0.4–0.5 dl g−1, and exhibited excellent solubility in many organic solvents such as N,N‐dimethyl acetamide, N,N′‐dimethyl formamide, N‐methyl pyrrolidone (NMP), dimethyl sulfoxide, and pyridine. These PIs exhibited glass transition temperatures (Tg) between 250 and 325° C. Their initial decomposition temperatures (Ti) ranged between 270 and 450°C, and 10% weight loss temperature (T10) up to 500°C with 68% char yield at 600°C under nitrogen atmosphere. Transparent and hard polymer films were obtained via casting from their NMP solutions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Poly(vinyl pyrrolidone‐co‐isobutyl styryl polyhedral oligomeric silsesquioxane)s (PVP–POSS) were synthesized by one‐step polymerization and characterized using FTIR, high‐resolution 1H‐NMR, solid‐state 13C‐NMR, 29Si‐NMR, GPC, and DSC. The POSS content can be controlled by varying the POSS feed ratio. The Tg of the PVP–POSS hybrid is influenced by three main factors: (1) a diluent role of the POSS in reducing the self‐association of the PVP; (2) a strong interaction between the POSS siloxane and the PVP carbonyl, and (3) physical aggregation of nanosized POSS. At a relatively low POSS content, the role as diluent dominates, resulting in a decrease in Tg. At a relatively high POSS content, the last two factors dominate and result in Tg increase of the PVP–POSS hybrid. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2208–2215, 2004  相似文献   

14.
Bis(4‐cyanato‐3,5‐dimethylphenyl)anisylmethane was prepared by treating CNBr with bis(4‐hydroxy‐3,5‐dimethylphenyl)anisylmethane and blended with commercial epoxy resin in different ratios and cured at 120°C for 2 h, 180°C for 1 h, and postcured at 220°C for 1 h using diamino diphenyl methane as curing agent. Castings of neat resin and blends were prepared and characterized. The composite laminates were also fabricated with glass fiber using the same composition. The tensile strength of the composites increased with increase in cyanate content (3, 6, and 9%) from 322 to 355 MPa. The fracture toughness values also increased from 0.7671 kJ/m2, for neat epoxy resin, to 0.8615 kJ/m2, for 9% cyanate ester‐modified epoxy system. The 10% weight loss temperature of pure epoxy (358°C) was increased to 390°C by the incorporation of cyanate ester resin. The incorporation of cyanate ester up to 9% in the epoxy resin increases the Tg from 143 to 147°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Hydroxyl-terminated polydimethylsiloxane (HTPDMS) and hydrogenated bisphenol A-type epoxy resin (AL-3040) were coreacted with a silane coupling agent (KH-550) to form an AL-3040 epoxy resin–HTPDMS block copolymer. Then, the copolymer was used as a compatibilizer to modify cyanate ester with different mass ratios. Subsequently, the blend was cured to form HTPDMS-modified shape-memory cyanate ester. The soft Si─O─Si segments of HTPDMS act as a flexible unit that can be grafted with the crosslinked triazine structures of cyanate ester. It was excellent for the toughening modification of cyanate ester. With increasing mass ratio of compatibilizer and cyanate ester, the tensile strength and glass transition temperature (T g) of HTPDMS-modified cyanate ester were decreased, whereas impact strength and elongation at break were increased. The shape-memory tests exhibited that HTPDMS-modified cyanate ester systems have excellent shape-memory properties with a shape recovery rate of >96% and shape fixity rate of >97% and a recovery time of less than 110 s. Furthermore, Thermo-Gravimetric Analyzer (TGA) tests showed that HTPDMS-modified cyanate ester exhibited good thermal stability; the temperature of 10% mass loss was high at 365 °C. The char yield was increased with increasing contents of compatibilizer at 800°C. Therefore, HTPDMS modified cyanate ester exhibited much better heat resistance at high temperature. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48641.  相似文献   

16.
Bis(4‐cyanato 3,5‐dimethylphenyl) naphthylmethane was prepared by treating CNBr with bis(4‐hydroxy 3,5‐dimethylphenyl) naphthylmethane in the presence of triethylamine at −5 to 5°C. The dicyanate was characterized by FT‐IR and NMR techniques. The prepared dicyanate was blended with commercial epoxy resin in different ratios and cured at 120°C for 1 hr, 180°C for 1 hr, and post cured at 220°C for 1 hr using diamino diphenyl methane (DDM) as curing agent. Castings of neat resin and blends were prepared and characterized by FT‐IR technique. The morphology of the blends was evaluated by SEM analysis. The composite laminates were also fabricated from the same composition using glass fiber. The mechanical properties like tensile strength, flexural strength, and fracture toughness were measured as per ASTMD 3039, D 790, and D 5528, respectively. The tensile strength increased with increase in cyanate content (3, 6, and 9%) from 322 to 355 MPa. The fracture toughness values also increased from 0.7671 kJ/m2 for neat epoxy resin to 0.8615 kJ/m2 for 9% cyanate ester epoxy modified system. The thermal properties were also studied. The 10% weight loss temperature of pure epoxy is 358°C and it increased to 398°C with incorporation of cyanate ester resin. The incorporation of cyanate ester up to 9% loading level does not affect the Tg to a very great extent. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

17.
Two series of amorphous copolyesters, PETGN and PETGS, were synthesized by the copolymerization of 2,6‐naphthalene dicarboxylic acid (NDA) (0–40%), succinic acid (SA) (0–40%), 1,3/1,4‐cyclohexanedimethanol (1,3/1,4‐CHDM) (10–50%), ethylene glycol (EG), and terephthalic acid (TPA). The compositions and molecular weights of the copolyesters were determined by 1H NMR spectroscopy and viscometry, respectively. The thermal behaviors were studied over the entire range of copolymer compositions, using DSC and TGA. The optical characteristics, heat‐shrinkable effects and tensile properties of these polymers were also determined. Experimental results indicated that the thermal, optical, tensile, and shrinkage properties of PETGN and PETGS were functions of NDA or SA content. DSC and X‐ray analysis demonstrated that both PETGN and PETGS series were amorphous. Incorporating NDA and SA influenced the Tg values of those polymers, from about 37°C for PETG30S40 to 89°C for PETG30N40. Furthermore, the shrinkage of these amorphous copolyesters was more than 40% when the heating temperature was higher than the corresponding Tg. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
A novel class of wholly aromatic poly(ester‐imide)s, having a biphenylene pendant group, with inherent viscosities of 0.32–0.49 dL g?1 was prepared by the diphenylchlorophosphate‐activated direct polyesterification of the preformed imide‐ring‐containing diacid, 4‐p‐biphenyl‐2,6‐bis(4‐trimellitimidophenyl)pyridine (1) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A reference diacid, 2,6‐bis(trimellitimido)pyridine (2) without a biphenylene pendant group and two phenylene rings in the backbone, was also synthesized for comparison purposes. At first, with due attention to structural similarity and to compare the characterization data, a model compound (3) was synthesized by the reaction of compound 1 with two mole equivalents of phenol. Moreover, the optimum condition of polymerization reactions was obtained via a study of the model compound synthesis. All of the resulting polymers were characterized by Fourier transform infrared and 1H NMR spectroscopy and elemental analysis. The ultraviolet λmax values of the poly(ester‐imide)s were also determined. All of the resulting polymers exhibited excellent solubility in common organic solvents, such as pyridine, chloroform, tetrahydrofuran, and m‐cresol, as well as in polar organic solvents, such as N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide. The crystalline nature of the polymers obtained was evaluated by means of wide‐angle X‐ray diffraction. The resulting poly(ester‐imide)s showed nearly an amorphous nature, except poly(ester‐imide) derived from 4,4′‐dihydroxy biphenyl. The glass transition temperatures (Tg) of the polymers determined by differential scanning calorimetry thermograms were in the range 298–342 °C. The 10% weight loss temperatures (T10%) from thermogravimetric analysis curves were found to be in the range 433–471 °C in nitrogen. Films of the polymers were also prepared by casting the solutions. Copyright © 2006 Society of Chemical Industry  相似文献   

19.
4,4′‐bis(Phenoxy)diphenyl sulfone (DPODPS) was synthesized by reaction of phenol with bis(4‐chlorophenyl) sulfone in tetramethylene sulfone in the presence of NaOH. Two poly(aryl ether sulfone ether ketone ketone)s (PESKKs) with high molecular weight were prepared by low temperature solution polycondensation of DPODPS and terephthaloyl chloride (TPC) or isophthaloyl chloride (IPC), respectively, in 1,2‐dichloroethane and in the presence of aluminum chloride (AlCl3) and N‐methylpyrrolidone (NMP). The resulting polymers were characterized by various analytical techniques, such as FT‐IR, 1H‐NMR, DSC, TG, and WAXD. The results show that the Tg and Td of PESEKKs are much higher, but its Tm is lower than those of PEKK. The other results indicate that PESEKKs exhibit excellent thermostabilities at 300 ± 10°C. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 489–493, 2005  相似文献   

20.
A novel fluorinated diamine monomer with a keto group, 4‐[4‐amino‐2‐trifluoromethyl phenoxy]‐4′‐[4‐aminophenoxy]benzophenone (ATAB) was prepared by reacting dihydroxybenzophenone with 4‐chloronitrobenzene and 2‐chloro‐5‐nitrotrifluoromethylbenzene in the presence of potassium carbonate followed by catalytic reduction with palladized carbon (10%). Fluorinated polyimides IVa–e were synthesized from the diamine mentioned above via a two‐step method (thermal and chemical imidization). Polyimides IVa–e have inherent viscosities in the range 0.65–1.06 dL g?1 (thermal imidization) and 0.82–1.56 dL g?1 (chemical imidization). The polyimides prepared by chemical imidization exhibit excellent solubility. Polyimide films exhibit tensile strength, elongation and tensile modulus in the ranges 96–106 MPa, 9–13% and 1.1–1.7 GPa, respectively. The T10 values of the polyimides are in the range 540–598 °C in nitrogen and 545–586 °C in air, with more than 50–60% char yield. They have Tg values between 244 and 285 °C. The prepared polyimides show cut‐off wavelengths in the range 365–412 nm and transmittance at 450 nm in the range 80.9–94.2%. The dielectric constants of the polyimide films are in the range 3.10–3.77 at 1 kHz and 3.04–3.66 at 10 kHz, with moisture absorption of 0.14–0.40%. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号