首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The swelling behaviors of poly(acrylamide) (PAAm)/clay nanocomposite hydrogels (hereinafter abbreviated as NC gels) in acrylamide (AAm) aqueous solution have been investigated. As‐prepared PAAm/clay hydrogels (S‐M gels) were posttreated by immersing them in AAm aqueous solution. It was found that the swelling ratio of the NC gels increased greatly when the concentration of the solution is below a critical concentration (c*), whereas the gels were disintegrated in the solution when the concentration of the solution is above the c*. Some disc‐like particles were found in the AAm solution accompanying with the unusual swelling behaviors. This unusual swelling behavior is resulted from the change of network structure of the NC gels in AAm aqueous solution, which was further convinced by transmission electron microscopy and element analyses. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
A series of nanocomposite hydrogels were prepared from various ratios of N‐isopropylacrylamide (NIPAAm) and organic montmorillonite (MMT). The influence of the extent of MMT in the NIPAAm/MMT nanocomposite hydrogels on the physical properties and drug‐release behavior was the main purpose of this study. The microstructure and morphology were identified by X‐ray diffraction (XRD) and scanning electronic microscopy (SEM). The results showed that the swelling ratios for these nanocomposite hydrogels decreased with increase in the content of MMT. The gel strength and Young's modulus of the gels also increased with increase in the content of MMT. XRD results indicated that the exfoliation of MMT was achieved in the swollen state. Finally, the drug‐release behavior for the gels was also assessed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3652–3660, 2003  相似文献   

3.
Inclusion of nano‐clays into hydrogels is an efficient approach to produce nanocomposite hydrogels. The introduction of nano‐clay into hydrogels causes an increase in water absorbency. In the present work, Nanocomposite hydrogels based on kappa‐carrageenan were synthesized using sodium montmorillonite as nano‐clay. Acrylamide and methylenebisacrylamide were used as monomer and crosslinker, respectively. The structure of nanocomposite hydrogels was investigated by XRD and SEM techniques. Swelling behavior of nanocomposite hydrogels was studied by varying clay and carrageenan contents as well as methylenebisacrylamide concentration. An optimum swelling capacity was achieved at 12% of sodium montmorilonite. The swollen nanocomposite hydrogels were used to study water retention capacity (WRC) under heating. The results revealed an increase in WRC due to inclusion of sodium montmorilonite clay. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Highly elastic and robust nanocomposite hydrogels based on N‐isopropylacrylamide (NIPAM) and cationic (3‐acrylamidopropyl) trimethylammonium chloride (AMPTMA) were synthesized by photopolymerization. Nanoscopic clay, laponite XLS, was added in the gels during the synthesis. The effect of a hydrophobic salt, lithium bis(trifluoromethane) sulfonimide (LiNTf2), and clay content on the viscoelastic properties, swelling ratio, and stiffness of the nanocomposite hydrogels were investigated as a function of temperature. Synthetic clay served as a multifunctional cross‐linker, producing hydrogels with enhanced elastic properties. Anionic NTf2 binds to the cationic comonomer units and significantly affected the viscoelasticity and thermal properties. DSC measurements showed that the volume phase transition temperature and its enthalpy changed with the clay content and with introducing the cationic comonomer (AMPTMA) in the PNIPAM network. With the addition of either laponite XLS or the comonomer and 5 mM solution of LiNTf2, a fourfold and fivefold increase in elastic modulus was obtained, respectively, compared to that of the homopolymer PNIPAM hydrogel. With increasing the temperature from 20 to 45°C for the copolymer gel with 10% AMPTMA in 5 mM LiNTf2, the elastic modulus grew 15 times larger. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43123.  相似文献   

5.
A series of polymer–clay nanocomposite (PCN) materials that consist of organosoluble polyimide and layered montmorillonite clay were prepared by the solution dispersion technique. The organosoluble polyimide containing non‐coplanar moiety in diamine monomer and flexible bridging linkages in dianhydride monomer was synthesized by chemical imidization. The as‐synthesized PCN materials were characterized by infrared spectroscopy, wide‐angle powder X‐ray diffraction, and transmission electron microscopy. The organosoluble polyimide showed better corrosion resistance compared to polyaniline, poly(o‐ethoxyaniline) and poly(methyl methacrylate) by using a series of standard electrochemical corrosion measurements of corrosion potential, polarization resistance, and corrosion current in 5 wt % aqueous NaCl electrolyte. Polyimide–clay nanocomposite materials incorporated with low loading of clay were found to further improve corrosion inhibition over pure polyimide. Effects of the material composition on the O2/H2O molecular permeability, optical clarity, and thermal properties of polyimide–clay nanocomposite materials were studied by molecular permeability analysis, UV–visible transmission spectra, thermogravimetric analysis, and differential scanning calorimetry, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3573–3582, 2004  相似文献   

6.
Volkan Can  Oguz Okay 《Polymer》2007,48(17):5016-5023
The swelling behavior and the elastic properties of nanocomposite hydrogels have been investigated. The hydrogels were prepared by free-radical polymerization of the monomers acrylamide (AAm), N,N-dimethylacrylamide (DMA), and N-isopropylacrylamide (NIPA) in aqueous clay suspensions at 21 °C. Laponite with a radius of gyration in distilled water of 20 nm was used as clay particles in the hydrogel preparation. The reactions with AAm monomer were carried out in the presence of the chemical crosslinker N,N′-methylenebis(acrylamide) (BAAm). It was found that the volume of nanocomposite hydrogels immersed in water rapidly increases and attains a maximum value after about one day. Surprisingly, further increase in the swelling time results in the deswelling of the gels until they reach a limiting swelling ratio after about 5 days. This unusual swelling behavior is observable only when the clay concentration in the hydrogel is above the overlap threshold c. Swelling measurements combined with the elasticity tests show that the effective crosslink density first decreases, but then increases with increasing time of swelling of the hydrogels. The results were explained in terms of the rearrangements of the highly entangled polymer chains and clay particles during the gel volume change.  相似文献   

7.
Polyvinylpyrrolidone (PVP) and carboxymethyl cellulose (CMC) mixed hydrogels were prepared by heat treatment. The physical characteristics of the hydrogels were studied by Fourier transform infrared spectroscopy and scanning electron microscopy. The swelling study of the hydrogels in water shows remarkable water absorption property. The swelling effect on the rheological behavior of PVP‐, PVP–CMC‐, and CMC‐based hydrogels was investigated to judge its application on uneven surface of body. The rheological properties (storage modulus, loss modulus, and complex viscosity) of samples before drying and swelled (15, 30, and 60 min) were measured against angular frequency and composition. The hydrogel containing PVP/CMC ratio of 20 : 80 appeared to be the best hydrogel from rheological and water absorbent points of view. These properties and low cost of the materials utilized in this work suggest that this hydrogel is a viable alternative product for dressing materials. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Acrylamide (AAm)/acrylic acid (AAc) hydrogels in the cylindirical form were prepared by γ‐irradiating binary systems of AAm/AAc with 2.6–20.0 kGy γ‐rays. The effect of the dose and relative amounts of AAc and pH on the swelling properties, diffusion behavior of water, diffusion coefficients, and network properties of hydrogel systems was investigated. The swelling capacities of AAm/AAc hydrogels were in the range of 1000–3000%, while poly(acrylamide) (PAAm) hydrogels swelled in the range of 450–700%. Water diffusion into hydrogels was found to be non‐Fickian‐type diffusion. Diffusion coefficients of AAm/AAc hydrogels were found between 0.79 × 10?5 and 2.78 × 10?5 cm2 min?1. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3570–3580, 2002  相似文献   

9.
Acrylamide/mesaconic acid (AAm/MA) hydrogels were prepared by free radical solution polymerization in aqueous solution of acrylamide (AAm) with mesaconic acid (MA) as comonomer and two multifunctional crosslinkers such as ethylene glycol dimethacrylate (EGDMA) and 1,4‐butanediol dimethacrylate (BDMA). Swelling experiments were performed in water at 25°C, gravimetrically. The influence of mesaconic acid content in hydrogels was examined. Swelling of AAm/MA hydrogels was increased up to 2301% (for containing 20 mg MA and crosslinked by EGDMA) to 3296% (for containing 80 mg MA and crosslinked by BDMA), while AAm hydrogels swelled up to 1330% (crosslinked by BDMA) to 1400% (crosslinked by EGDMA). The values of equilibrium water content of the hydrogels are 0.9301–0.9706. Diffusion behavior was investigated. Water diffusion into hydrogels was found to be non‐Fickian in character. Diffusion coefficients of AAm/MA hydrogels were calculated by the short time approximation and found to be from 38.01 × 10?6 cm2 s?1 to 182.73 × 10?6 cm2 s?1. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2253–2259, 2005  相似文献   

10.
Poly(methyl methacrylate) (PMMA)–clay nanocomposite (PCN) materials were synthesized through in situ intercalative polymerization. A cationic surfactant, [2(dimethylamino)ethyl]triphenylphosphonium bromide, was used as an intercalating agent with pristine Na+‐montmorillonite (MMT). The synthesized PCN materials were subsequently investigated by a series of characterization techniques, including wide‐angle powder X‐ray diffraction, Fourier transform IR spectroscopy, transmission electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. Compared to pure PMMA, the PCN materials exhibit higher thermal degradation temperatures and glass‐transition temperatures. The dielectric properties of PCN blending with a commercial PMMA material in film form with clay loading from 0.5 to 5.0 wt % were measured under frequencies of 100 Hz–1 MHz at 35–100°C. Significantly depressed dielectric constants and losses were observed for these PCN‐blending materials. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2175–2181, 2005  相似文献   

11.
In this study, we prepared a series of polymer–clay nanocomposite (PCN) materials that consisted of an emeraldine base of poly(o‐methoxyaniline) and layered montmorillonite. Organic o‐methoxyaniline monomers were first intercalated into the interlayer regions of organophilic clay hosts followed by a one‐step in situ oxidative polymerization. The as‐synthesized PCN materials were subsequently characterized by FTIR spectroscopy, wide‐angle powder X‐ray diffraction, and transmission electron microscopy. The molecular weights of PMA extracted from PCN materials and bulk PMA were determined by GPC with THF as eluant. Effects of the material composition on the thermal stability, flame resistance, electrical conductivity, and corrosion inhibition performance of PMA, along with a series of PCN materials in the form of fine powder and coating, were also studied by TGA, limiting oxygen index measurements, four‐point probe technique, and electrochemical corrosion measurements, respectively. Morphological images of as‐synthesized materials were also investigated by SEM. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1072–1080, 2003  相似文献   

12.
Macroporous superabsorbent hydrogels (SAHs) composed of acrylamide (AAm) and sodium methacrylate (NMA) were prepared by aqueous solution polymerization in the presence of a glucose solution. Their swelling capacity was investigated as a function of the concentrations of the glucose solution, sodium methacrylate, crosslinker, initiator, and activator. The porosity of the poly(acrylamide‐co‐sodium methacrylate) superabsorbent hydrogels was confirmed using scanning electron microscopy. The SAHs were characterized by IR spectroscopy. To estimate the effect on the swelling behavior, three types of crosslinkers were employed: N,N′‐methylenebisacrylamide, 1,4‐butanediol diacrylate, and diallyl phthalate. Network structural parameters such as initial swelling rate, swelling rate constant, and maximum equilibrium swelling were evaluated by water absorption measurement. The equilibrium water content (EWC%) of the AAm–NMA macroporous SAHs was found to be in the range of 93.31–99.68, indicating that these SAHs may have applications as biomaterials in the medicinal, pharmaceutical, and veterinary fields. Most of the SAHs prepared in this investigation followed non‐Fickian‐type diffusion, and few followed a case II– or super–case II‐type diffusion. The diffusion coefficients of these macroporous SAHs were investigated. Further, the swelling behavior of these SAHs also was investigated at different pHs and in different salt solutions and simulated biological fluids. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3202–3214, 2006  相似文献   

13.
BACKGROUND: Hydrogels of alginate (ALG) with partially carboxymethylated chitosan (CMCHI) have been produced for drug delivery, based on the interactions between the negative groups and an ionic crosslinker. In the present work, CMCHI was used to evaluate the influence of amino groups that are positively charged at pH = 4 and 6 on the ALG–CMCHI core–shell hydrogel preparation. An ANOVA statistics tool was used to evaluate the effect of composition, pH and chitosan chemical nature on the morphology and swelling properties of the hydrogels in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). RESULTS: The ALG–CMCHI core–shell hydrogels presented smaller (ca 2.3 µm) and more homogeneous microparticles than those with unmodified chitosan (ca 5.5 µm). The ALG–CMCHI hydrogels showed higher thermal stability and lower degree of swelling in SGF (314%) compared to those with chitosan (708%), since in the former hydrogels the protective layers that surround the particles are negatively charged. CONCLUSION: CMCHI can replace chitosan in the production of core–shell hydrogels with improved properties since the negative charge surrounding the ALG–CMCHI particles favours a lower degree of swelling. The results point out a possible prevention of burst release in SGF, sustaining the swelling ability of the ALG–CMCHI core–shell hydrogels in SIF, promising appropriate drug release. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
A series of nanocomposite hydrogels based on polyvinyl alcohol containing 0–10 wt % of the organically modified montmorillonite clay were prepared by freezing‐thawing cyclic method. The morphology of the nanocomposite hydrogels was observed by the scanning electron microscopy technique. The structural properties were determined by measuring the network mesh size, crosslinking density, and average molecular weight of polymer chains between crosslinks. The swelling behavior and the effect of swelling medium temperature on the swelling kinetics and characteristics of the nanocomposite hydrogels were also investigated. The results showed that two structural characteristics i.e., network mesh size and average molecular weight of polymer chains between crosslinks have inverse dependence on the clay loading level in the nanocomposite hydrogel, while crosslinking density shows completely direct dependence. Swelling measurements demonstrated a linear relation between the degree of swelling and the square root of immersion time at all swelling medium temperatures. The results indicated that the swelling characteristics of the nanocomposite hydrogels including the equilibrium degree of weight and volume swelling and the equilibrium water content were decreased by increasing the quantity of the clay incorporated into the hydrogel as well as by decreasing the temperature of swelling medium. While, the time required to reach to the equilibrium condition, as another swelling characteristic of the hydrogels, exhibited a completely opposite behavior. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

15.
Summary  New xanthan hydrogels were synthesized at 90 C in water acid media using adipic acid dihydrazide (ADH) as crosslinking agent, in the presence of 1-ethyl-3[3-dimethyl amino] propyl carbodiimide hydrochloride (EDCI) as reagent. In these conditions, xanthan chains are in a predominantly helical conformation and through rheological measurements the influence of the temperature over the helix-coil transition was assessed. Xanthan hydrogels with different concentration in polysaccharide and ADH were obtained and characterised by elemental analysis and swelling properties. High concentration of xanthan (i.e. 25gL-1) is needed to obtain gel due to the low available carboxylic functions in the helical conformation. During the swelling analysis, it was noted that high temperature (i.e. 90 C) favoured the conformational transitions within the network. The drug loading and releasing properties were estimated using methylene blue as model molecule and different experimental pH and ionic strength conditions.  相似文献   

16.
In this study, a random copolymer of acylamide and acrylic acid [poly(AAm‐co‐AA)] was prepared by a redox copolymerization method of their aqueous solutions. The effects of initial AAm/AA mole ratio, PEG 4000 content, and N,N′‐methylenebisacrylamide concentration on swelling behavior were investigated in water. Average molecular weights between crosslinks, percentage swelling, swelling equilibrium values, and diffusion/swelling characteristics (i.e., the structure of network constant, the type of diffusion, the initial swelling rate, swelling rate constant) were evaluated for every hydrogel systems. The hydrogels showed mass swelling capabilities in the range 789–1040% (for AAm/AA hydrogels), 769–930% (for AAm/AA hydrogels in the presence of PEG 4000), and 716–1040% (for AAm/AA hydrogels containing different concentrations of the crosslinker). The swelling capabilities of the hydrogels decreased with the increasing AA, PEG 4000, and crosslinker concentrations. The diffusion of water into AAm/AA hydrogels was found to be a non‐Fickian type. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1289–1293, 2004  相似文献   

17.
A series of nanocomposite hydrogels used for bioadhesive were prepared from acrylic acid, poly(ethylene glycol) methyl ether acrylate, and intercalated hydrotalcite (HT) by photopolymerization. The microstructures of the intercalated HT and sample gels were identified by X‐ray diffraction (XRD). The results showed that the swelling ratio for these nanocomposite hydrogels increased with an increase in HT, but the gel strength and adhesive force for these gels decreased with an increase in HT. The XRD results indicated that the exfoliation of intercalated HT was achieved in the xerogels and swollen gels. Finally, the drug‐release behaviors for these gels were also examined. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 692–699, 2004  相似文献   

18.
A statistical thermodynamic modeling of the formation of polymer/clay intercalation and nanocomposites was developed. The key factor in determining intercalation was an exothermic heat of mixing between polymer chains and the organically modified silicate surface. This was found to agree with previous experimental results in the literature including halogenated polymers and acrylonitrile copolymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1657–1663, 2006  相似文献   

19.
魏清渤  高楼军  付峰  张玉琦  马荣萱 《化工进展》2012,31(1):163-168,207
采用硝酸铈胺-聚乙二醇为氧化-还原引发体系,N,N-亚甲基双丙烯酰(N,N-MBA)为交联剂,通过简单的自由基聚合法,设计合成了一种聚(丙烯酰胺-g-聚乙二醇)/聚乙烯吡咯烷酮PAAm-g-PEG/PVP接枝交联结构的半互穿网络水凝胶。研究了它们在不同pH值缓冲溶液中的溶胀与扩散行为以及溶胀动力学;并采用红外光谱和热分析系统对其结构和热性能进行了分析测量。实验结果表明:水凝胶的溶胀行为和扩散模式取决于溶液的pH值。随着缓冲溶液pH值增加,平衡溶胀率减小;在不同的缓冲溶液中理论最大吸水量S∞与实验值基本相一致。水凝胶的溶胀行为可以通过选择加入不同分子量大小的PEG来调节和控制。  相似文献   

20.
BACKGROUND: Polymer–clay nanocomposites (PCNs) have attracted considerable interest in recent years owing to their unique physical and chemical properties that lead to a wide range of applications. A series of PCN materials consisting of polyimide and layered montmorillonite (MMT) clay were successfully prepared by in situ polymerization. RESULTS: Silicate layers are better dispersed in polymer matrices when dual intercalating agents (hexadecyltrimethylammonium bromide–4,4′‐oxydianiline) are applied for MMT modification according to wide‐angle X‐ray diffraction and transmission electron microscopy studies. Effects of single and dual intercalating agents on thermal stability, mechanical strength and the molecular barrier of PCN materials consisting of organo‐modified MMT were studied by means of thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analyses, gas permeability analysis and vapor permeability analysis. CONCLUSION: Improved thermal and mechanical stabilities, as well as barrier properties were observed for the PCN materials containing dual intercalating agent‐modified MMT. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号