首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The Na+,K(+)-ATPase alpha subunit has three known isoforms, alpha 1, alpha 2 and alpha 3, each encoded by a separate gene. This study was undertaken to determine the functional status of a fourth human alpha-like gene, ATP1AL2. Partial genomic sequence analysis revealed regions exhibiting sequence similarity with exons 3-6 of the Na+,K(+)-ATPase alpha isoform genes. ATP1AL2 cDNAs spanning the coding sequence of a novel P-type ATPase alpha subunit were isolated from a rat testis library. The predicted polypeptide is 1028 amino acids long and exhibits 76-78% identity with the rat Na+,K(+)-ATPase alpha 1, alpha 2 and alpha 3 isoforms, indicating that ATP1AL2 may encode a fourth Na+,K(+)-ATPase alpha isoform. A 3.9-kb mRNA is expressed abundantly in human and rat testis.  相似文献   

2.
The (Na,K)ATPase is responsible for generating the ionic gradients and membrane potentials by the exchange of intracellular Na+ for K+. It has been recently shown that (Na,K)ATPase is involved in the exocytic pathway of basic fibroblast growth factor (bFGF), although it is not known that bFGF is secreted to the outside of cell through direct interaction with (Na,K)ATPase. To understand the role for (Na,K)ATPase in the secretory pathway of bFGF, we have sought to identify the cytoplasmic domains of the alpha 1 isoform of (Na,K)ATPase interacting with bFGF by yeast two-hybrid system. We have also investigated the interaction between the alpha 2 isoform of (Na,K)ATPase and bFGF to find out whether the interaction is isoform-specific. We found that none of the cytoplasmic domains of (Na,K)ATPase isoforms interacted with bFGF. The result suggests that the interaction between bFGF and (Na,K)ATPase might be indirect, thus requiring other proteins which are involved in the formation of protein complexes for the interaction, although we cannot exclude the possibility that the interaction requires the element of the whole alpha subunit structure that was not present in the isolated alpha subunit cytoplasmic domains.  相似文献   

3.
Three isoforms of catalytic alpha subunits and two isoforms of beta subunits of Na+,K+-ATPase were detected in rat sciatic nerves by western blotting. Unlike the enzyme in brain, sciatic nerve Na+,K+-ATPase was highly resistant to ouabain. The ouabain-resistant alpha1 isoform was demonstrated to be the predominant form in rat intact sciatic nerve by quantitative densitometric analysis and is mainly responsible for sciatic nerve Na+,K+-ATPase activity. After sciatic nerve injury, the alpha3 and beta1 isoforms completely disappeared from the distal segment owing to Wallerian degeneration. In contrast, alpha2 and beta2 isoform expression and Na+,K+-ATPase activity sensitive to pyrithiamine (a specific inhibitor of the alpha2 isoform) were markedly increased in Schwann cells in the distal segment of the injured sciatic nerve. These latter levels returned to baseline with nerve regeneration. Our results suggest that alpha3 and beta1 isoforms are exclusive for the axon and alpha2 and beta2 isoforms are exclusive for the Schwann cell, although axonal contact regulates alpha2 and beta2 isoform expressions. Because the beta2 isoform of Na+,K+-ATPase is known as an adhesion molecule on glia (AMOG), increased expression of AMOG/beta2 on Schwann cells in the segment distal to sciatic nerve injury suggests that AMOG/beta2 may act as an adhesion molecule in peripheral nerve regeneration.  相似文献   

4.
Several lines of evidence underscore a possible role of voltage-gated Na+ channels (NaCH) in epilepsy. We compared the regional distribution of mRNAs coding for Na+ channel alpha subunit I, II and III in brains from control and kainate-treated rats using non-radioactive in situ hybridization with subtype-specific digoxigenin-labelled cRNA probes. Labelling intensity was evaluated by a densitometric analysis of digitized images. Heterogeneous distribution of the three Na+ channel mRNAs was demonstrated in brain from adult control rats, which confirmed previous studies. Subtype II mRNAs were shown to be abundant in cerebellum and hippocampus. Subtype I mRNAs were also detected in these areas. Subtype III mRNAs were absent in cerebellar cortex, but significantly expressed in neurons of the medulla oblongata and hippocampus. The three subtypes were differentially distributed in neocortical layers. Subtype II mRNAs were present in all of the layers, but mRNAs for subtypes I and III were concentrated in pyramidal cells of neocortex layers IV-V. During kainate-induced seizures, we observed an increase in Na+ channel II and III mRNA levels in hippocampus. In dentate gyrus, subtype III mRNAs increased 3 h after KA administration to a maximum at 6 h. At this latter time, a lower increase in NaCh III mRNAs was also recorded in areas CA1 and CA3. NaCh III overexpression in dentate gyrus persisted for at least 24 h. In the same area, NaCh II mRNAs were also increased with a peak 3 h after KA injection and a return to control levels by 24 h. No changes in NaCh I mRNAs were seen. The KA-induced up-regulation in NaCh mRNAs probably resulted in an increase in hippocampal neuronal excitability.  相似文献   

5.
Three isoforms (alpha1, alpha2, and alpha3) of the catalytic (alpha) subunit of the plasma membrane (PM) Na+ pump have been identified in the tissues of birds and mammals. These isoforms differ in their affinities for ions and for the Na+ pump inhibitor, ouabain. In the rat, alpha1 has an unusually low affinity for ouabain. The PM of most rat cells contains both low (alpha1) and high (alpha2 or alpha3) ouabain affinity isoforms, but precise localization of specific isoforms, and their functional significance, are unknown. We employed high resolution immunocytochemical techniques to localize alpha subunit isoforms in primary cultured rat astrocytes, neurons, and arterial myocytes. Isoform alpha1 was ubiquitously distributed over the surfaces of these cells. In contrast, high ouabain affinity isoforms (alpha2 in astrocytes, alpha3 in neurons and myocytes) were confined to a reticular distribution within the PM that paralleled underlying endoplasmic or sarcoplasmic reticulum. This distribution is identical to that of the PM Na/Ca exchanger. This raises the possibility that alpha1 may regulate bulk cytosolic Na+, whereas alpha2 and alpha3 may regulate Na+ and, indirectly, Ca2+ in a restricted cytosolic space between the PM and reticulum. The high ouabain affinity Na+ pumps may thereby modulate reticulum Ca2+ content and Ca2+ signaling.  相似文献   

6.
BACKGROUND: Sodium-potassium-adenosinetriphosphatase (Na,K-ATPase) is the primary membrane enzyme responsible for the reabsorption of sodium ions in the kidney. It is known that in the nephron the major subunit isoforms of Na,K-ATPase are alpha 1 and beta 1. Previous reports on the presence of alpha 2 and alpha 3 isoforms in the kidney were mixed and controversial. METHODS: Techniques of ultrathin cryosectioning and immunoelectron microscopy were used to study the distribution of alpha subunit isoforms (alpha 1, alpha 2, alpha 3) and beta subunit (beta 1 isoform) of Na,K-ATPase in renal tubular cells. Western blot analysis was used to show the presence of the alpha 3 isoform in the extract of kidney mitochondria. RESULTS: We were able to confirm the previous finding that the alpha 1 isoform and the beta 1 isoform were the preponderant isoforms of the alpha and beta subunits of Na,K-ATPase in the basolateral membrane. In addition, we unexpectedly found the presence of the alpha 3 isoform in the mitochondria of rat renal tubular cells. The alpha 2 and alpha 3 isoforms were not observed in either the apical or basolateral membrane. CONCLUSIONS: Both immunoelectron microscopy and Western blot analysis of the rat kidney mitochondria confirm the presence of the alpha 3 isoform of Na,K-ATPase in the rat kidney mitochondria. The function of this enzyme in the mitochondria is not clear at this time.  相似文献   

7.
Weaver (wv) mice carry a point mutation in the pore region of a G-protein-gated inwardly rectifying K+ channel subunit (Kir3.2). wvKir3.2 conducts inward currents that may cause the loss of neurons in the cerebellum and substantia nigra. Although Kir3.2 is widely expressed in the CNS, significant morphological or physiological changes have not been reported for other brain areas. We studied the role of wvKir3.2 in hippocampal slices of young [postnatal day (P) 4-18] and adult wv/wv (>/=P24) mice, because protein levels of Kir 3. 1 and Kir3.2 appear to be normal in the first 3 postnatal weeks and only decrease thereafter. In disinhibited slices, the GABAB receptor agonist R-baclofen reduced burst activity in wv/wv mice but was much more potent in wild-type mice. Mean resting membrane potential, slope input resistance, and membrane time constant of CA3 neurons of adult wv/wv and wild-type mice were indistinguishable. However, R-baclofen or chloroadenosine did not induce K+ currents or any other conductance change in wv/wv mice. Moreover, electrical or chemical stimulation of inhibitory neurons did not evoke slow IPSPs in adult wv/wv mice. Only in a few cells of young wv/wv mice did GABAB receptor activation by R-baclofen or presynaptic stimulation induce small inward currents, which were likely caused by a Na+ ion influx through wvKir3.2 channels. The data show that the pore mutation in wvKir3.2 channels results in a hippocampal phenotype resembling Kir3.2-deficient mutants, although it is not associated with the occurrence of seizures.  相似文献   

8.
Previous results showed that Na+/K+-ATPase may have a functional relationship with the neurotransmitter serotonin which activates the glial sodium pump in the rat brain. Both the reaction rate (V) of Na+/K+-ATPase activity and [3H]ouabain binding were significantly increased in the presence of serotonin. It is not known, however, which alpha isoform is involved in the Na+/K+-ATPase response to serotonin and its regional distribution. Quantitative autoradiography of [3H]ouabain binding to rat brain slices was employed at different [3H]ouabain concentrations in order to gain information on both the distribution and the possible isoform involved. The results showed that 1500 nM [3H]ouabain binding was sensitive to serotonin 10(-3) M and significantly increased in the following brain regions: frontal cortex, areas CA1, CA2, and CA3 of the hippocampus, presubiculum, zona incerta, caudate putamen and the amygdaloid area, confirming and extending previous results. An effect of serotonin on brain but not kidney tissue at high, 1500 nM, and the lack of effect at low, 50 nM [3H]ouabain concentrations, strongly suggests the participation of the alpha2 isoform in the response of the pump to the neurotransmitter. Glial cells showed stimulation of ouabain binding by serotonin at ouabain concentrations above 350 nM. The present results open interesting questions related to the brain regions involved and the K+ handling by the glial alpha2 isoform of the pump.  相似文献   

9.
In this study we analysed the changes in the properties of rat cerebral cortex Na+K(+)-ATPase in streptozotocin induced diabetes (STZ-diabetes). Special attempt was made to determine whether insulin treatment of diabetic animals could restore the altered parameters of this enzyme. Na+/K(+)-ATPase activity was found to be decreased by 15% after 2 weeks, and by 37% after 4 weeks in diabetic rat brains with a parallel decrease in maximal capacity of low affinity ouabain binding sites. There was no significant change in the high affinity ouabain binding sites. The Kd values did not change significantly. Western blot analysis of brain Na+/K(+)-ATPase isoforms indicated a 61 +/- 5.8% and 20 +/- 2.8% decrease of the alpha 1 and alpha 3 isoforms, respectively in 4 weeks diabetic animals. Change in the amount of the alpha 2 isoform proved to be less characteristic. Both types of beta subunit isoform showed a significant decrease in four weeks diabetic rats. Our data indicate a good correlation in diabetic rats between changes in Na-/K(+)-ATPase activity, low affinity ouabain binding capacity and the level of alpha 1 isoform. While insulin treatment of diabetic animals restored the blood glucose level to normal, a complete reversal of diabetes induced changes in Na+/K(+)-ATPase activity, ouabain binding capacity and Na+/K(+)-ATPase isoform composition could not be achieved.  相似文献   

10.
An unique endogenous digitalis-like factor (EDLF) has been previously purified from human newborn cord plasma and its differential effects tested on the three well defined functional isoforms (alpha1, alpha2 and alpha3) of the alpha subunits of Na+/K+-ATPase in rat. EDLF specifically inhibits the enzymatic activity. It differs from ouabain by three criteria: a preincubation with the membranes is required for full activity, no effect on the rat cerebral alpha3 isoform and a steep dose-response curve with the same apparent potency for rat alpha2 and alpha1 isoforms of high (10(-7) M) and low affinity (3 x 10(-5) M) for ouabain. These results indicate that the Na+/K+-ATPase inhibitor involved in the regulation of sodium and body fluid volume and present in neonate and adult human plasmas is distinct from ouabain.  相似文献   

11.
OBJECTIVE: The aim was to determine if copper deficiency affects the expression of Na/K-ATPase alpha isoforms in the rat heart. METHODS: Copper deficiency was induced by placing weanling rats on a copper deficient diet for 4-5 weeks. Adult ventricular tissue, isolated ventricular myocytes, and brain stems of the control and deficient rats were compared for Cu, Zn-superoxide dismutase (CuZn-SOD) activity and for protein and mRNA contents of Na/K-ATPase alpha isoforms. RESULTS: In brain stem, where copper deficiency did not alter CuZn-SOD activity, mRNA and protein levels of alpha isoforms also remained unchanged. In ventricular tissue and ventricular myocytes, copper deficiency reduced CuZn-SOD activity, mRNAs of alpha 1 and alpha 2 isoforms, and the alpha 2 isoform protein. The alpha 1 isoform protein of ventricular tissue and its myocytes was marginally reduced by copper deficiency. CONCLUSIONS: In the rat ventricular tissue, oxidative stress resulting from copper deficiency (1) enhances the turnover of the more oxidant sensitive alpha 2 isoform to a greater extent than the turnover of the alpha 1 isoform; (2) regulates mRNA levels of alpha 1 and alpha 2 isoforms; and (3) contributes to the cardiomyopathy of copper deficiency.  相似文献   

12.
This study examined the potential roles of the plasma membrane Ca2+-ATPase (PMCA) at the blood-CSF and blood-brain barriers in brain Ca2+ homeostasis and blood-brain barrier Na+/K+-ATPase subunits in brain K+ homeostasis. During dietary-induced hypo- and hypercalcemia (0.59+/-0.06 and 1.58+/-0.12 mM [Ca2+]) there was no significant change in choroid plexus PMCA (Western Blots) compared to normocalcemic rats (plasma [Ca2+]: 1.06+/-0.11 mM). In contrast, PMCA in cerebral microvessels isolated from hypocalcemic rats was 150% greater than that in controls (p<0.001). Comparison of the alpha3 subunit of Na+/K+-ATPase from cerebral microvessels isolated from hypo-, normo- and hyperkalemic rats (2.3+/-0.1, 3.9+/-0.1 and 7. 2+/-0.6 mM [K+]) showed a 75% reduction in the amount of this isoform during hyperkalemia. None of the other Na+/K+-ATPase isoforms varied with plasma [K+]. These results suggest that both PMCA and the alpha3 subunit of Na+/K+-ATPase at the blood-brain barrier play a role in maintaining a constant brain microenvironment during fluctuations in plasma composition.  相似文献   

13.
Previously we have shown that the Na+-translocating Escherichia coli (F1-delta)/Propionigenium modestum (Fo+delta) hybrid ATPase acquires a Na+-independent phenotype by the c subunit double mutation F84L, L87V that is reflected by Na+-independent growth of the mutant strain MPC8487 on succinate [Kaim, G., and Dimroth, P. (1995) J. Mol. Biol. 253, 726-738]. Here we describe a new class of mutants that were obtained by random mutagenesis and screening for Na+-independent growth on succinate. All six mutants of the new class contained four mutations in the a subunit (S89P, K220R, V264E, I278N). Results from site-specific mutagenesis revealed that the substitutions K220R, V264E, and I278N were sufficient to create the new phenotype. The resulting E. coli mutant strain MPA762 could only grow in the absence but not in the presence of Na+ ions on succinate minimal medium. This effect of Na+ ions on growth correlated with a Na+-specific inhibition of the mutant ATPase. The Ki for NaCl was 1. 5 mM at pH 6.5, similar to the Km for NaCl in activating the parent hybrid ATPase at this pH. On the other hand, activation by Li+ ions was retained in the new mutant ATPase. In the absence of Na+ or Li+, the mutant enzyme had the same pH optimum at pH 6.5 and twice the specific activity as the parent hybrid ATPase. In accordance with the kinetic data, the reconstituted mutant ATPase catalyzed H+ or Li+ transport but no Na+ transport. These results show for the first time that the coupling ion selectivity of F1Fo ATPases is determined by structural elements not only of the c subunit but also of the a subunit.  相似文献   

14.
Dopamine inhibits Na+,K+-ATPase activity in renal tubule cells. This inhibition is associated with phosphorylation and internalization of the alpha subunit, both events being protein kinase C-dependent. Studies of purified preparations, fusion proteins with site-directed mutagenesis, and heterologous expression systems have identified two major protein kinase C phosphorylation residues (Ser-11 and Ser-18) in the rat alpha1 subunit isoform. To identify the phosphorylation site(s) that mediates endocytosis of the subunit in response to dopamine, we have performed site-directed mutagenesis of these residues in the rat alpha1 subunit and expressed the mutated forms in a renal epithelial cell line. Dopamine inhibited Na+,K+-ATPase activity and increased alpha subunit phosphorylation and clathrin-dependent endocytosis into endosomes in cells expressing the wild type alpha1 subunit or the S11A alpha1 mutant, and both effects were blocked by protein kinase C inhibition. In contrast, dopamine did not elicit any of these effects in cells expressing the S18A alpha1 mutant. While Ser-18 phosphorylation is necessary for endocytosis, it does not affect per se the enzymatic activity: preventing endocytosis with wortmannin or LY294009 blocked the inhibitory effect of dopamine on Na+,K+-ATPase activity, although it did not alter the increased alpha subunit phosphorylation induced by this agonist. We conclude that dopamine-induced inhibition of Na+, K+-ATPase activity in rat renal tubule cells requires endocytosis of the alpha subunit into defined intracellular compartments and that phosphorylation of Ser-18 is essential for this process.  相似文献   

15.
Heterologous expression of the beta subunit of H+/K(+)-ATPase (HK beta) with alpha subunits of Na+/K(+)-ATPase (NK alpha) in yeast leads to the formation of ouabain binding complexes, indicating assembly of the two subunits into active ion pumps (Eakle, K. A., Kim, K. S., Kabalin, M. A., and Farley, R. A. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 2834-2838). Complexes of NK alpha and HK beta are less sensitive to inhibition of ouabain binding by K+, suggesting that HK beta lowers the affinity of K+ binding sites. This effect is particularly pronounced when HK beta is combined with the alpha 3 isoform of NK alpha. In this case, titration with K+ yields a biphasic curve, suggesting that there are two nonequivalent sites for K+ binding. Attempts at purifying complexes formed with either alpha 1 + HK beta or alpha 3 + HK beta using SDS extraction of microsomal membranes resulted in the loss of ouabain binding. Controls show that alpha 1 + beta 1 and alpha 3 + beta 1 complexes still retain ouabain binding after SDS extraction under the same conditions. This suggests that the HK beta subunit forms a less stable complex with NK alpha subunits. We have created chimeric beta subunits comprised of the amino-terminal cytoplasmic and transmembrane regions of HK beta combined with the carboxyl-terminal extracellular region of Na+/K(+)-ATPase beta 1 (HN beta 1) and the complementary chimera with amino-terminal cytoplasmic and transmembrane regions of beta 1 combined with the carboxyl-terminal extracellular region of HK beta (NH beta 1). When NH beta 1 is combined with either alpha 1 or alpha 3, the complexes show profiles of K+ inhibition of ouabain binding that are very similar to HK beta combined with either alpha 1 or alpha 3. The data suggest that the extracellular region of HK beta is primarily responsible for the effect on apparent K+ affinity. When the HN beta 1 subunit is expressed with the alpha 3 subunit, less than 5% of the amount of ouabain binding complexes are formed compared with HN beta 1 + alpha 1. This observation suggests that the HN beta 1 subunit either assembles poorly or forms an unstable complex with alpha 3. After SDS extraction, complexes of alpha 1 + NH beta 1 and alpha 3 + NH beta 1 retain ouabain binding, while alpha 1 + HN beta 1 complexes are sensitive to SDS extraction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The expression of mRNA encoding plasma membrane calcium ATPase (PMCA) subunit isoforms (1-4) and splice variants was examined in the adult and developing rat cochlea by PCR and in situ hybridization. High levels of PMCA mRNA expression were observed in the neurons of the spiral ganglion, and in hair cells. Spiral ganglion neurons expressed PMCA 1-3 beginning in embryonic development, reaching high levels shortly after birth, and continuing into adulthood. Inner hair cells expressed PMCA 1 at moderate levels from birth to the time of onset of cochlear function on postnatal day 12, and strongly from then until adulthood. Outer hair cells expressed PMCA 2 at high levels from shortly after birth through adulthood. The data suggest that the calcium clearance requirements of inner and outer hair cells are distinct. PMCA 2 is the isoform with the highest affinity for calmodulin, and has also been associated with high levels of inositol triphosphate. Its presence in outer hair cells suggests that regulation of the enzyme by calmodulin may be particularly important for this hair cell type. It further suggests that inositol phosphate may play a unique role in the outer hair cell.  相似文献   

17.
GABA(A) receptor (GABAR) isoforms in the central nervous system are composed of combinations of alpha(1-6), beta(1-4), gamma(1-4), delta(1) and epsilon(1) subunit subtypes arranged in a pentamer. Many regions of the brain express high levels of mRNA encoding several different subunits and even multiple subunit subtypes. The stoichiometry of GABAR isoforms is unclear, and the number and identity of individual subunit subtypes that are coassembled remain uncertain. To examine the role of beta subunit subtypes in the functional properties of GABARS and to determine whether multiple beta subtypes can be coassembled in functional GABARs, plasmids containing cDNAs encoding rat beta1 and/or beta3, alpha5 and gamma2L subtypes were cotransfected into L929 fibroblasts. The properties of the expressed receptor populations were determined using whole-cell and single-channel recording techniques. The alpha5beta1gamma2L isoform was less sensitive to GABA than the alpha5beta3gamma2L isoform. alpha5beta1gamma2L isoform currents were also insensitive to the allosteric modulator loreclezole, while alpha5beta3gamma2L isoform currents were strongly potentiated by loreclezole. Fibroblasts transfected with plasmids containing cDNAs for both beta1 and beta3 subtypes along with alpha5 and gamma2L subtypes produced a receptor population with an intermediate sensitivity to GABA which was insensitive to loreclezole. These results suggest that functional GABARs can be formed that contain two different beta1 subunit subtypes with properties different from receptors that contain only a single beta1 subtype and that the beta1 subunit subtypes influence the response of GABARs to GABA and to the allosteric modulator loreclezole.  相似文献   

18.
19.
We have previously purified and characterized a nervous system-specific glycoprotein antigen from adult Drosophila heads, designated Nervana [nerve antigen (NRV)] and identified two separate genes coding for three different proteins. All three proteins share homology with the beta subunits of Na+,K+-ATPase from various other species. In this study we have isolated a new Drosophila Na+,K+-ATPase alpha subunit cDNA clone (PSalpha; GenBank accession no. AF044974) and demonstrate expression of functional Na+,K+-ATPase activity when PSalpha mRNA is coinjected into Xenopus oocytes along with any of the three different Nrv mRNAs. Western blotting, RNase protection assays, and immunocytochemical staining of adult fly sections indicate that NRV2 is expressed primarily in the nervous system. Staining is most intense in the brain and thoracic ganglia and is most likely associated with neuronal elements. NRV1 is more broadly expressed in muscle and excretory tissue and also shows diffuse distribution in the nervous system. Similar to other species, Drosophila expresses multiple isoforms of Na+,K+-ATPase subunits in a tissue- and cell type-specific pattern. It will now be possible to use the advantages of Drosophila molecular and classical genetics to investigate the phenotypic consequences of altering Na+,K+-ATPase expression in various cell and tissue types.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号