首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 412 毫秒
1.
CaNdAlO4 microwave dielectric ceramics were modified by Ca/Ti co-substitution, and their dielectric characteristics were evaluated along with their structure and microstructures. Ca1+ x Nd1− x Al1− x Ti x O4 ( x =0, 0.025, 0.05, 0.10, 0.15, 0.20) ceramics with the relative density of over 95% theoretical density were obtained by sintering at 1400°–1450°C in air for 3 h, where the K2NiF4-type solid solution single phase was determined from the compositions of x <0.20, while a small amount of CaTiO3 secondary phase was detected for x =0.20. With Ca/Ti co-substitution in CaNdAlO4 ceramics, the dielectric constant (ɛr) increased with increasing x , and the temperature coefficient of resonant frequency (τf) was adjusted from negative to positive, while the Q × f 0 value increased significantly at first and reached an extreme value at x =0.025 and the maximum at x =0.15. The best combination of microwave dielectric characteristics were achieved at x =0.15 (ɛr=19.5, Q × f 0=93 400 GHz, τf=−2 ppm/°C). The improvement of the Q × f 0 value primarily originated from the reduced interlayer polarization with Ca/Ti co-substitution, while the decreased tolerance factor, the subsequent increased interlayer stress, and the appearance of CaTiO3 secondary phase brought negative effects upon the Q × f 0 value.  相似文献   

2.
The microwave dielectric properties of CaTi1− x (Al1/2Nb1/2) x O3 solid solutions (0.3 ≤ x ≤ 0.7) have been investigated. The sintered samples had perovskite structures similar to CaTiO3. The substitution of Ti4+ by Al3+/Nb5+ improved the quality factor Q of the sintered specimens. A small addition of Li3NbO4 (about 1 wt%) was found to be very effective for lowering sintering temperature of ceramics from 1450–1500° to 1300°C. The composition with x = 0.5 sintered at 1300°C for 5 h revealed excellent dielectric properties, namely, a dielectric constant (ɛr) of 48, a Q × f value of 32 100 GHz, and a temperature coefficient of the resonant frequency (τf) of −2 ppm/K. Li3NbO4 as a sintering additive had no harmful influence on τf of ceramics.  相似文献   

3.
Dense (1− x )Ca(Mg1/3Ta2/3)O3/ x CaTiO3 ceramics (0.1≤ x ≤0.9) were prepared by a solid-state reaction process. The crystal structures and microstructures were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Single-phase solid solutions were obtained in the entire composition range. Long-range 1:2 ordering of B-site cations and oxygen octahedra tilting lead to the monoclinic symmetry with space group P 21/ c for x =0.1. For x above 0.1, the long-range ordering was destroyed and the crystal structure became the orthorhombic with space group Pbnm . The microwave dielectric properties showed a strong dependence on the composition and microstructure. The dielectric constant and temperature coefficient of resonant frequency increased nonlinearly as the CaTiO3 content increased while the Qf values decreased approximately linearly. Good combination of microwave dielectric properties was obtained at x =0.45, where ɛr=45.1, Qf =34 800 GHz, and τf=17.4 ppm/°C.  相似文献   

4.
The microwave dielectric properties of the (1− x )CaTiO3– x Ca(Zn1/3Nb2/3)O3 ceramic system have been investigated. The ceramic samples sintered at 1300°–1450°C for 4 h in air exhibit orthorhombic pervoskite and form a complete solid solution for different x value. When the x value increased from 0.2 to 0.8, the permittivity ɛr decreased from 115 to 42, the unloaded quality factor Q × f increased from 5030 to 13 030 GHz, and the temperature coefficient τf decreased from 336 to −28 ppm/°C. When x =0.7, the best combination of dielectric properties, a near zero temperature coefficient of resonant frequency of τf∼−6 ppm/°C, Q × f ∼10 860 GHz and ɛr∼51 is obtained.  相似文献   

5.
Li2CO3 was added to Mg2V2O7 ceramics in order to reduce the sintering temperature to below 900°C. At temperatures below 900°C, a liquid phase was formed during sintering, which assisted the densification of the specimens. The addition of Li2CO3 changed the crystal structure of Mg2V2O7 ceramics from triclinic to monoclinic. The 6.0 mol% Li2CO3-added Mg2V2O7 ceramic was well sintered at 800°C with a high density and good microwave dielectric properties of ɛ r=8.2, Q × f =70 621 GHz, and τf=−35.2 ppm/°C. Silver did not react with the 6.0 mol% Li2CO3-added Mg2V2O7 ceramic at 800°C. Therefore, this ceramic is a good candidate material in low-temperature co-fired ceramic multilayer devices.  相似文献   

6.
Low-temperature-sinterable (Zr0.8Sn0.2)TiO4 powders were prepared using 3 mol% Zn(NO3)2 additive and then compared with powders prepared using 3 mol% ZnO additive and no additives. Sintering at 1200°C for 2 h produced a dielectric ceramic with ρ= 98.6% of theoretical density (TD), ɛr= 38.4, Q × f (GHz) = 42000, and τ f =−1 ppm/°C. Sintering at 1250°C resulted in an excellent dielectric with ρ= 99% of TD, epsilonr= 40.9, Q × f (GHz) = 49000, and τ f =−2 ppm/°C. Scanning electron microscopy showed a microstructure with grains measuring 0.5 to 1 μm, and transmission electron microscopy revealed secondary phase in the grain boundaries.  相似文献   

7.
Low-loss dielectric ceramics based on Ba(B'1/2Ta1/2)O3 (B'=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Yb, and In) complex perovskites have been prepared by the solid-state ceramic route. The dielectric properties (ɛr, Q u, and τf) of the ceramics have been measured in the frequency range 4–6 GHz by the resonance method. The resonators have a relatively high dielectric constant and high quality factor. Most of the compounds have a low coefficient of temperature variation of the resonant frequencies. The microwave dielectric properties have been improved by the addition of dopants and by solid solution formation. The solid solution Ba[(Y1− x Pr x )1/2Ta1/2]O3 has x =0.15, with ɛr=33.2, Q u× f =51,500 GHz, and τf≈0. The microwave dielectric properties of Ba(B'1/2Ta1/2)O3 ceramics are found to depend on the tolerance factor ( t ), ionic radius, and ionization energy.  相似文献   

8.
The effects of substituting Nb5+ with Ta5+ on the microwave dielectric properties of the ZnNb2O6 ceramics were investigated in this study. The forming of Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution was confirmed by the measured lattice parameters and the EDX analysis. By increasing x , not only could the Q × f of the Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution be tremendously boosted from 83 600 GHz at x =0 to a maximum 152 000 GHz at x =0.05, the highest ɛr∼24.6 could also be achieved simultaneously. It was mainly due to the uniform grain morphology and the highest relative density of the specimen. A fine combination of microwave dielectric properties (ɛr∼24.6, Q × f ∼152 000 GHz at 8.83 GHz, τf∼–71.1 ppm/°C) was achieved for Zn(Nb0.95Ta0.05)2O6 solid solution sintered at 1175°C for 2 h.  相似文献   

9.
The microwave dielectric properties of CaTi1-χ(Al1/2Ta1/2)cHO3 solid solutions (0.3 ≤χ≤ 0.5) have been investigated. The ceramic samples had perovskite structures similar to CaTiO3. The partial substitution of Ti4+ by a coupled Al3+/Tas+ permitted improvement of the quality factor Q . The dielectric constant (τr) and temperature coefficient of resonant frequency (τr) decrease rapidly with an increase of χ. A new high-quality microwave dielectric material was found at χ= 0.46 with σr= 46.5, Q f = 27300 GHz, and πf= 0 ppm/°C. The relationship between microstructures and dielectric properties is presented.  相似文献   

10.
Low-loss ceramics having the chemical formula Mg2(Ti1− x Sn x )O4 for x ranging from 0.01 to 0.09 have been prepared by the conventional mixed oxide route and their microwave dielectric properties have been investigated. X-ray powder diffraction patterns indicate the corundum-structured solid solutions for the prepared compounds. In addition, lattice parameters, which linearly increase from 8.4414 to 8.4441 Å with the rise of x from 0.01 to 0.09, also confirm the forming of solid solutions. By increasing x from 0.01 to 0.05, the Q × f of the specimen can be tremendously boosted from 173 000 GHz to a maximum 318 000 GHz. A fine combination of microwave dielectric properties (ɛr∼15.57, Q × f ∼318 000 GHz at 10.8 GHz, τf∼−45.1 ppm/°C) was achieved for Mg2(Ti0.95Sn0.05)O4 ceramics sintered at 1390°C for 4 h. Ilmenite-structured Mg(Ti0.95Sn0.05)O3r∼16.67, Q × f ∼275 000 GHz at 10.3 GHz, τf∼−53.2 ppm/°C) was detected as a second phase. The presence of the second phase, however, would cause no significant variation in the dielectric properties of the specimen, because the second phase properties are very similar to the primary phase. These unique properties, in particular, low ɛr and high Q × f , can be utilized as a very promising dielectric material for ultra-high-frequency applications.  相似文献   

11.
The effects of LiF and ZnO–B2O3–SiO2 (ZBS) glass combined additives on phase composition, microstructures, and microwave dielectric properties of Ca[(Li1/3Nb2/3)0.84Ti0.16]O3−δ (CLNT) ceramics were investigated. The LiF and ZBS glass combined additives lowered the sintering temperature of CLNT ceramics effectively from 1150° to 880°C. The main diffraction peaks of all the specimens split due to the coexistence of the non-stoichiometric phase (A) and stoichiometric phase (B), which all possess CaTiO3-type perovskite structures. The transformation from A into B became accelerated with the increase of LiF or ZBS content. ZBS glass restrained the volatilization of lithium salt, which greatly affected the microstructures and microwave dielectric properties. CLNT ceramics with 2 wt% LiF and 3 wt% ZBS sintered at 900°C for 2 h show excellent dielectric properties: ɛr=34.3, Q × f =17 400 GHz, and τf=−4.6 ppm/°C. It is compatible with Ag electrodes, which makes it a promising ceramic for low-temperature cofired ceramics technology application.  相似文献   

12.
The microwave dielectric properties and the microstructures of (Mg1− x Co x )2TiO4 ceramics prepared by the conventional solid-state route were investigated. Lattice parameters were also measured for specimens with different x . The formation of solid solution (Mg1− x Co x )2TiO4 ( x =0.02–0.1) was confirmed by the X-ray diffraction patterns, energy dispersive X-ray analysis, and the lattice parameters measured. By increasing x from 0 to 0.05, the Q × f of the specimen can be tremendously boosted from 150 000 GHz to a maximum of 286 000 GHz. A fine combination of microwave dielectric properties (ɛr∼15.7, Q × f ∼286 000 GHz at 10.4 GHz, τf∼−52.5 ppm/°C) was achieved for (Mg0.95Co0.05)2TiO4 ceramics sintered at 1390°C for 4 h. Ilmenite-structured (Mg0.95Co0.05)TiO3 was detected as a second phase. The presence of the second phase would cause no significant variation in the dielectric properties of the specimen because it possesses compatible properties compared with that of the main phase. In addition, only a small deviation in the dielectric properties was monitored for specimens with x =0.04–0.05 at 1360°–1420°C. It not only provides a wide process window but also ensures an extremely reliable material proposed as a very promising dielectric for low-loss microwave and millimeter wave applications.  相似文献   

13.
Composite ceramics in a solid solution of (Mg1− x Mn x )2TiO4 ( x =0.02–0.1) have been prepared by the mixed oxide route. Formation of the solid solution was confirmed by the X-ray diffraction, the EDX analysis, and the measured lattice parameters, which varied linearly from Mg2TiO4 ( a = b = c =8.4410 Å) to (Mg0.9 Mn0.1)2TiO4 ( a = b = c =8.4445 Å). The XRD analysis also confirmed the co-existence of a cubic-structured (Mg1− x Mn x )2TiO4 and an ilmenite-structured second phase (Mg1− x Mn x )TiO3. The composition expected to have a maximum Q × f (276 200 GHz at 10.5 GHz) is (Mg0.95Mn0.05)2TiO4 with ɛr∼15.69 and τf∼−52.6 ppm/°C. The existence of the second phase, however, would lead to no significant variation in the dielectric properties of the specimen because it possesses compatible properties compared with that of the main phase.  相似文献   

14.
MgSiO3 ceramics were synthesized and their microwave dielectric properties were investigated. The Mg2SiO4 phase was formed at temperatures lower than 1200°C, while the orthorhombic MgSiO3 phase started to form by the reaction of SiO2 and Mg2SiO4 in the specimen fired at 1200°C. The structure of the MgSiO3 ceramics was transformed from orthorhombic to monoclinic when the sintering temperature exceeded 1400°C. A dense microstructure was developed for the specimens sintered at above 1350°C. The excellent microwave dielectric properties of ɛr=6.7, Q × f =121 200 GHz, and τf=−17 ppm/°C were obtained from the MgSiO3 ceramics sintered at 1380°C for 13 h.  相似文献   

15.
The effect of a bespoke glass sintering aid, 0.3Bi2O3–0.3Nb2O5–0.3B2O3–0.1SiO2 (BN1), developed from the base ceramic composition, BiNbO4 (BN), on the sinterability, microstructure, and microwave (MW) dielectric properties of BN ceramics has been investigated. Densities >97% theoretical could be achieved at 1020°C for samples with up to 15% BN1 additions. The resulting microstructure was composed of BN laths surrounded by a residual glass phase that contained small fibrous crystals. Some evidence of dissolution of BN crystals was observed. Optimum properties were exhibited for samples with 15 wt% of glass addition sintered for 4 h at 1020°C with a relative permittivity ɛr=38, a MW quality factor Q × f 0=17 353 at 5.6 GHz, and a temperature coefficient of resonant frequency τf=−10 ppm/°C. The high Q × f 0, ɛr, and low τf, coupled with a relatively low sintering temperature, suggest that the use of bespoke glass sintering aids of this type may have great potential for the fabrication of MW ceramics.  相似文献   

16.
The microwave dielectric properties of two A-site-deficient perovskite-type ceramics in the La6Mg4A2W2O24 [A=Ta and Nb] system were investigated. The compounds were synthesized by the solid-state ceramic route. The structure and microstructure were analyzed using X-ray diffraction and scanning electron microscopy techniques. The dielectric properties were measured in the microwave frequency range [4–6 GHz] by the resonance method. La6Mg4Ta2W2O24 had Q u× f =13 600 GHz, ɛr=25.2, and τf=−45 ppm/°C and La6Mg4Nb2W2O24 had Q u× f =16 400 GHz, ɛr=25.8, and τf=−56 ppm/°C.  相似文献   

17.
The microstructure and microwave dielectric properties of a (1− x )(Mg0.95Ni0.05)TiO3− x Ca0.6La0.8/3TiO3 ceramics system have been investigated. The system was prepared using a conventional solid-state ceramic route. In order to produce a temperature-stable material, Ca0.6La0.8/3TiO3 was added for a near-zero temperature coefficient (τf). With partial replacement of Mg2+ by Ni2+, the dielectric properties of the (1− x )(Mg0.95Ni0.05)TiO3− x Ca0.6La0.8/3TiO3 ceramics can be promoted. The microwave dielectric properties are strongly correlated with the sintering temperature and the composition. An excellent Q × f value of 118,000 GHz can be obtained for the system with x =0.9 at 1325°C. For practical application, a dielectric constant (ɛr) of 24.61, a Q × f value of 102,000 GHz, and a temperature coefficient of resonant frequency (τf) of −3.6 ppm/°C for 0.85(Mg0.95Ni0.05)TiO3−0.15Ca0.6La0.8/3TiO3 at 1325°C are proposed. A parallel-coupled line band-pass filter is designed and simulated using the proposed dielectric to study its performance.  相似文献   

18.
Re3Ga5O12 (Re: Nd, Sm, Eu, Dy, Yb, and Y) garnet ceramics were synthesized and their microwave dielectric properties were investigated for advanced substrate materials in microwave integrated circuits. The Re3Ga5O12 ceramics sintered at 1350°–1500°C had a high-quality factor ( Q × f ) ranging from 40 000 to 192 173 GHz and a low-dielectric constant (ɛr) of between 11.5 and 12.5. They also exhibited a relatively stable temperature coefficient of resonant frequency (τf) in the range of −33.7 to −12.4 ppm/°C. In particular, the Sm3Ga5O12 ceramics sintered at 1450°C exhibited good microwave dielectric properties of ɛr=12.4, Q × f =192 173 GHz, and τf=−19.2 ppm/°C.  相似文献   

19.
The sintering behavior and dielectric properties of Bi3NbO7 ceramics prepared by the high-energy ball milling (HEM) method and conventional mixed oxides method with V2O5 addition were investigated. All the samples were sintered between 840° and 960°C. For the ceramics prepared by the mixed oxides method, the pure tetragonal Bi3NbO7 phase formed without any cubic phase. With changing sintering temperature, the dielectric constant ɛr lies between 79 and 92, while the Q × f values are between 300 and 640 GHz. The samples sintered at 870°C have the best microwave dielectric properties with ɛr=79, Q × f =640 GHz, and the temperature coefficients of resonant frequency τf between 0 and −20 ppm/°C. For the ceramics prepared by the HEM, a pure cubic phase was obtained. The ɛr changes between 78 and 80 and Q × f were between 200 and 290 GHz.  相似文献   

20.
The Sr(B'0.5Ta0.5)O3 ceramics where B'=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, and Yb have been prepared by the conventional solid-state ceramic route and their microwave dielectric properties have been investigated. The structure and microstructure of the ceramics have been characterized by X-ray diffraction and scanning electron microscope techniques. The relative permittiviy (ɛr) varies linearly with B'-site ionic radii, except for La, and the temperature coefficient of resonant frequency (τf) varies linearly with the tolerance factor. The Sr(B'0.5Ta0.5)O3 ceramics have ɛr in the range 25.9–32, Q u× f =4500–54 300 GHz, and τf=−79 to −42 ppm/°C. A slight deviation from stoichiometry affects the dielectric properties of these double perovskites. Partial substitution of Ba for Sr could tune the dielectric properties. Addition of rutile (TiO2) lowered the sintering temperature and improved the dielectric properties of Sr(B'0.5Ta0.5)O3 ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号