首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polarization anisotropy of electroluminescence and absorption in a ten-layer system of vertically correlated InAs quantum dots separated by 8.6-nm-thick GaAs spacer layers is investigated experimentally. The quantum-dot system is built into a two-section laser structure with sections of equal length. It is found that the polarization anisotropy in this system is smaller than the anisotropy in similar systems with a single layer of quantum dots or quantum-dot molecules, but larger than that in a quantum-dot superlattice. The spectra of differential absorption in the structure under study for different strengths of the applied electric field are also investigated. The rate of variation in the Stark shift as a function of the electric field is determined, the results giving evidence of controlled quantum coupling between adjacent quantum dots in tenlayer vertically correlated InAs/GaAs quantum-dot systems with 8.6- and 30-nm-thick GaAs spacer layers. The measured polarization dependences are explained by the participation of heavy-hole ground states in optical transitions. This effect is defined by the two dimensional nature of the system under study.  相似文献   

2.
Deep level transient spectroscopy (DLTS) is used to study electron emission from the states in the system of vertically correlated InAs quantum dots in the p-n InAs/GaAs heterostructures, in relation to the thickness of the GaAs spacer between the two layers of InAs quantum dots and to the reverse-bias voltage. It is established that, with the 100 Å GaAs spacer, the InAs/GaAs heterostructure manifests itself as a system of uncoupled quantum dots. The DLTS spectra of such structures exhibit two peaks that are defined by the ground state and the excited state of an individual quantum dot, with energy levels slightly shifted (by 1–2 eV), due to the Stark effect. For the InAs/GaAs heterostructure with two layers of InAs quantum dots separated by the 40 Å GaAs spacer, it is found that the quantum dots are in the molecule-type phase. Hybridization of the electron states of two closely located quantum dots results in the splitting of the levels into bonding and antibonding levels corresponding to the electron ground states and excited states of the 1s +, 1s ?, 2p +, 2p ?, and 3d + types. These states manifest themselves as five peaks in the DLTS spectra. For these quantum states, a large Stark shift of energy levels (10–40 meV) and crossing of the dependences of the energy on the electric field are observed. The structures with vertically correlated quantum dots are grown by molecular beam epitaxy, with self-assembling effects.  相似文献   

3.
The results of experimental and theoretical studies of quantum dot formation in an InAs/GaAs(100) system in the case of a subcritical width of the deposited InAs layer (1.5–1.6 monolayers) are presented. It is shown that, in the subcritical range of InAs thicknesses (smaller than 1.6 monolayers), regardless of the deposition rate, the density of quantum dots increases and their size decreases in response to an increase in surface temperature. In the overcritical range of InAs thicknesses (more than 1.8 monolayers), the density of quantum dots increases and their size decreases in response to a decrease in temperature and an increase in the deposition rate. The observed behavior of quantum dot morphology is attributed to the transition from a thermodynamically to kinetically controlled regime of quantum dot formation near the critical thickness.  相似文献   

4.
The photoluminescence of InAs semiconductor quantum dots overgrown by GaAs in the low-temperature mode (LT-GaAs) using various spacer layers or without them is studied. Spacer layers are thin GaAs or AlAs layers grown at temperatures normal for molecular-beam epitaxy (MBE). Direct overgrowth leads to photoluminescence disappearance. When using a thin GaAs spacer layer, the photoluminescence from InAs quantum dots is partially recovered; however, its intensity appears lower by two orders of magnitude than in the reference sample in which the quantum-dot array is overgrown at normal temperature. The use of wider-gap AlAs as a spacer-layer material leads to the enhancement of photoluminescence from InAs quantum dots, but it is still more than ten times lower than that of reference-sample emission. A model taking into account carrier generation by light, diffusion and tunneling from quantum dots to the LT-GaAs layer is constructed.  相似文献   

5.
Electron-microscopy studies of GaAs structures grown by the method of molecular-beam epitaxy and containing arrays of semiconductor InAs quantum dots and metallic As quantum dots are performed. An array of InAs quantum dots is formed using the Stranski-Krastanow mechanism and consists of five layers of vertically conjugated quantum dots divided by a 5-nm-thick GaAs spacer layer. The array of As quantum dots is formed in an As-enriched GaAs layer grown at a low temperature above an array of InAs quantum dots using postgrowth annealing at temperatures of 400–600°C for 15 min. It is found that, during the course of structure growth near the InAs quantum dots, misfit defects are formed; these defects are represented by 60° or edge dislocations located in the heterointerface plane of the semiconductor quantum dots and penetrating to the surface through a layer of “low-temperature” GaAs. The presence of such structural defects leads to the formation of As quantum dots in the vicinity of the middle of the InAs conjugated quantum dots beyond the layer of “low-temperature” GaAs.  相似文献   

6.
《Microelectronics Journal》1999,30(4-5):341-345
We present investigations of the structural and optical properties of in-situ etched, self assembled InAs islands using AsBr3 within a molecular beam epitaxy system. This procedure allows reshaping and downsizing of quantum dots with atomic layer precision. The critical thickness of a second InAs layer on top of a thin GaAs layer covering a first InAs dot layer was investigated by RHEED using the 2D–3D transition due to the Stranski–Krastanov growth mode. In-situ etching of the GaAs spacer layer results in an array of small dips on the surface due to enhanced etching at locally strained areas. The dips influence the nucleation of the second dot layer.  相似文献   

7.
We present a study on the effects of quantum dot coverage on the properties of InAs dots embedded in GaAs and in metamorphic In0.15Ga0.85As confining layers grown by molecular beam epitaxy on GaAs substrates. We show that redshifted emission wavelengths exceeding 1.3 μm at room temperature were obtained by the combined use of InGaAs confining layers and high quantum dot coverage. The use of high InAs coverage, however, leads to detrimental effects on the optical and electrical properties of the structures. We relate such behaviour to the formation of extended structural defects originating from relaxed large-sized quantum dots that nucleate in accordance to thermodynamic equilibrium theories predicting the quantum dot ripening. The effect of the reduced lattice-mismatch of InGaAs metamorphic layers on quantum dot ripening is discussed in comparison with the InAs/GaAs system.  相似文献   

8.
Molecular beam epitaxy growth of a bilayer stacked InAs/GaAs quantum dot structure on a pure GaAs matrix has been systemically investigated.The influence of growth temperature and the InAs deposition of both layers on the optical properties and morphologies of the bilayer quantum dot(BQD) structures is discussed.By optimizing the growth parameters,InAs BQD emission at 1.436μm at room temperature with a narrower FWHM of 27 meV was demonstrated.The density of QDs in the second layer is around 9×109 to 1.4×1010 cm-2. The BQD structure provides a useful way to extend the emission wavelength of GaAs-based material for quantum functional devices.  相似文献   

9.
Epitaxial GaAs layers containing InAs semiconductor quantum dots and As metal quantum dots are grown by molecular beam epitaxy. The InAs quantum dots are formed by the Stranskii-Krastanow mechanism, whereas the As quantum dots are self-assembled in the GaAs layer grown at low temperature with a large As excess. The microstructure of the samples is studied by transmission electron microscopy. It is established that the As metal quantum dots formed in the immediate vicinity of the InAs semiconductor quantum dots are larger in size than the As quantum dots formed far from the InAs quantum dots. This is apparently due to the effect of strain fields of the InAs quantum dots upon the self-assembling of As quantum dots. Another phenomenon apparently associated with local strains around the InAs quantum dots is the formation of V-like defects (stacking faults) during the overgrowth of the InAs quantum dots with the GaAs layer by low-temperature molecular beam epitaxy. Such defects have a profound effect on the self-assembling of As quantum dots. Specifically, on high-temperature annealing needed for the formation of large-sized As quantum dots by Ostwald ripening, the V-like defects bring about the dissolution of the As quantum dots in the vicinity of the defects. In this case, excess arsenic most probably diffuses towards the open surface of the sample via the channels of accelerated diffusion in the planes of stacking faults.  相似文献   

10.
Different techniques for the preparation of patterned GaAs substrates for subsequent overgrowth are presented, including focused ion beam direct writing and laser holography followed by wet chemical or dry etching. GaAs-based buffer layers were grown on the patterns and consequently covered with self-assembled quantum dots (QDs). The effect of a strained InGaAs layer grown directly on the patterned substrates and its influence on QD formation and ordering is shown. The dot density, lateral distribution and size distribution of the dots are measured using atomic force microscopy. A comparison of the growth of QDs on patterned and unpatterned substrates indicates that on patterned substrates a higher QD density at the same InAs deposition can be achieved.  相似文献   

11.
A new possibility for growing InAs/GaAs quantum dot heterostructures for infrared photoelectric detectors by metal-organic vapor-phase epitaxy is discussed. The specific features of the technological process are the prolonged time of growth of quantum dots and the alternation of the low-and high-temperature modes of overgrowing the quantum dots with GaAs barrier layers. During overgrowth, large-sized quantum dots are partially dissolved, and the secondary InGaAs quantum well is formed of the material of the dissolved large islands. In this case, a sandwich structure is formed. In this structure, quantum dots are arranged between two thin layers with an increased content of indium, namely, between the wetting InAs layer and the secondary InGaAs layer. The height of the quantum dots depends on the thickness of the GaAs layer grown at a comparatively low temperature. The structures exhibit intraband photoconductivity at a wavelength around 4.5 μm at temperatures up to 200 K. At 90 K, the photosensitivity is 0.5 A/W, and the detectivity is 3 × 109 cm Hz1/2W?1.  相似文献   

12.
Electron microscopy studies of GaAs-based structures grown by molecular beam epitaxy and containing arrays of semiconductor InAs quantum dots and metal As quantum dots are performed. The array of InAs quantum dots is formed by the Stranski-Krastanov mechanism and consists of vertically coupled pairs of quantum dots separated by a GaAs spacer 10 nm thick. To separate the arrays of semiconductor and metal quantum dots and to prevent diffusion-induced mixing, the array of InAs quantum dots is overgrown with an AlAs barrier layer 5 or 10 nm thick, after which a GaAs layer is grown at a comparatively low temperature (180°C). The array of As quantum dots is formed in an As-enriched layer of the low-temperature GaAs by means of post-growth annealing at 400–760°C for 15 min. It is established that the AlAs barrier layer has a surface profile corresponding to that of a subbarrier layer with InAs quantum dots. The presence of such a profile causes the formation of V-shaped structural defects upon subsequent overgrowth with the GaAs layer. Besides, it was obtained that AlAs layer is thinned over the InAs quantum dots tops. It is shown that the AlAs barrier layer in the regions between the InAs quantum dots effectively prevents the starting diffusion of excess As at annealing temperatures up to 600°C. However, the concentration of mechanical stresses and the reduced thickness of the AlAs barrier layer near the tops of the InAs quantum dots lead to local barrier breakthroughs and the diffusion of As quantum dots into the region of coupled pairs of InAs quantum dots at higher annealing temperatures.  相似文献   

13.
The capping of an array of self-assembled InAs/GaAs quantum dots by an InGaAs quantum-well layer leads to an increase in their size due to indium enrichment of the region near the top of the quantum dots, which decreases the energy of the ground-state optical transition in quantum dots by 50 meV and shifts the hole wave function toward the top of the quantum dot.  相似文献   

14.
We report the control of self-organization of InxGa1−xAs/AlGaAs quantum disks on GaAs (311)B surfaces using a novel technique based upon lithography-defined SiN dot arrays. A strained InGaAs island array selectively grown using the SiN dots provides periodic strain field. When the pitch of lateral ordering corresponds with the period of the strain field, self-organized quantum disks stacked on the InGaAs islands are precisely arranged just as the buried SiN dot array. The spacing of the array element is 250–300 nm (x = 0.3) and around 150 nm (x = 0.4). Vertical alignment by strain is achieved at a very thick (95 nm) separating layer. Characterization using atomic force microscopy reveals the size-fluctuation of disk is dramatically improved with spatial ordering.  相似文献   

15.
The structure of (In,Ga,Al)As/GaAs stacks with one to three layers of self-assembled InAs quantum dots is studied by high-resolution x-ray diffractometry and x-ray reflectometry. It is shown that the quantum dots are almost pyramidal in shape. It is found that (i) a first InAs layer, 2.7 ML thick, is invariably produced with a faceted surface and (ii) vertical coupling of quantum dots and superlattice formation do occur (with three quantum-dot layers). It is demonstrated that combining the two methods provides researchers with more reliable structural data.  相似文献   

16.
在GaAs(100)的衬底上,采用MBE自组织方法生长了单层层厚分别为2和2.5ML的InAs层。通过原子力显微镜(AFM)观察,证实已在InAs层中形成量子点。采用光致发光谱及时间分辨谱对InAs量子点及浸润层开展研究和对比,分析了单层InAs量子点和浸润层中的载流子迁移过程,较好地解释了实验结果。  相似文献   

17.
A room-temperature negative characteristic temperature (T0 ) and ultralow threshold current density (Jth) of 48 Amiddotcm-2 are demonstrated for a 1.3-mum InAs quantum dot laser. These characteristics are obtained by combining a high-growth-temperature GaAs spacer layer with p-type modulation doping of the quantum dots in multiple layer dot-in-a-well structures. Through a comparison of p-doped and undoped devices, a photon coupling mechanism is proposed to account for the different temperature dependences of Jth for the two devices. Numerical simulations based on a rate equation model, which includes photon coupling between ground and excited quantum dot states, are performed. The simulations are able to account for the very different temperature-dependent Jth behavior of the doped and undoped device  相似文献   

18.
We have grown single, 10 and 20 InAs/GaAs quantum dots (QDs) multilayers by molecular beam epitaxy in Stranski-Krastanov growth mode with and without growth interruption. Multilayer structures of InAs QDs have been studied by photoluminescence (PL) and atomic force microscopy (AFM) techniques. Between 1 and 10 layers of QDs, 10 K PL shows a shift energy, and a PL linewidth reduction. Moreover, AFM image of the 10 layers sample shows that the InAs QDs size remains constant and almost uniform when the growth is without interruption. These effects are attributed to electronic coupling between QDs in the the columns. However, we show the possibility of extending the spectral range of luminescence due to InAs QDs up to 1.3 μm. Realisation of such a wavelength emission is related to formation of lateral associations or coupling of QDs (LAQDs or LCQDs) during InAs deposition when growth interruption (20 s) is used after each InAs QDs layer deposition. The growth interruption applied after the deposition of the InAs layer allows the formation of well-developed InAs dots (large dot size).  相似文献   

19.
Studies of the properties of InGaAsN compounds and methods of controlling the emission wavelength in InAs/GaAsN/InGaAsN heterostructures grown by molecular beam epitaxy on GaAs substrates are reviewed. The results for different types of heterostructures with quantum-size InGaAsN layers are presented. Among those are (1) traditional InGaAsN quantum wells in a GaAs matrix, (2) InAs quantum dots embedded in an (In)GaAsN layer, and (3) strain-compensated superlattices InAs/GaAsN/InGaAsN with quantum wells and quantum dots. The methods used in the study allow controllable variations in the emission wavelength over the telecommunication range from 1.3 to 1.76 μm at room temperature.  相似文献   

20.
The transition mechanism of InAs quantum dot (QD) to quantum ring (QR) was investigated. After the growth of InAs QDs, a thin layer of GaAs was overgrown on the InAs QD and the sample was annealed at the same temperature for a period of time. It was found that the central part of the InAs islands started to out diffuse and formed ring shape only after a deposition of a critical thickness (1 ~ 2 nm) of GaAs capped layer depending on the size of InAs QDs. This phenomenon was revealed by photoluminescence measurement and atomic force microscopy image. It is suggested that the strain energy provided by the GaAs overgrown layer is responsible for the InAs to diffuse out of the island to form QR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号