首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective was to determine the relationships between early-life parameters [including average daily gain (ADG), body weight (BW), milk replacer intake, starter intake, and birth season] and the first-lactation performance of Holstein cows. We collected data from birth years 2004 to 2012 for 2,880 Holstein animals. Calves were received from 3 commercial dairy farms and enrolled in 37 different calf research trials at the University of Minnesota Southern Research and Outreach Center from 3 to 195 d. Upon trial completion, calves were returned to their respective farms. Milk replacer options included varying protein levels and amounts fed, but in the majority of studies, calves were fed a milk replacer containing 20% crude protein and 20% fat at 0.57 kg/calf daily. Most calves (93%) were weaned at 6 wk. Milk replacer dry matter intake, starter intake, ADG, and BW at 6 wk were 21.5 ± 2.2 kg, 17.3 ± 7.3 kg, 0.53 ± 0.13 kg/d, and 62.4 ± 6.8 kg, respectively. Average age at first calving and first-lactation 305-d milk yield were 715 ± 46.5 d and 10,959 ± 1,527 kg, respectively. We conducted separate mixed-model analyses using the REML model-fitting protocol of JMP (SAS Institute Inc., Cary, NC) to determine the effect of early-life BW or ADG, milk replacer and starter intake, and birth season on first-lactation 305-d milk, fat, and true protein yield. Greater BW and ADG at 6 wk resulted in increased first-lactation milk and milk component yields. Intake of calf starter at 8 wk had a significant positive relationship with first-lactation 305-d yield of milk and milk components. Milk replacer intake, which varied very little in this data set, had no effect on first-lactation 305-d yield of milk and milk components. Calves born in the fall and winter had greater starter intake, BW, and ADG at 8 wk. However, calves born in the summer had a higher 305-d milk yield during their first lactation than those born in the fall and winter. Improvements were modest, and variation was high, suggesting that additional factors not accounted for in these analyses affected first-lactation performance.  相似文献   

2.
The objective was to determine whether increased energy and protein intake between 2 and 14 wk of age would increase growth rates of heifer calves without fattening. At 2 wk of age, Holstein heifer calves were assigned to 1 of 4 treatments in a 2 x 2 factorial arrangement with 2 levels of protein and energy intake (moderate [M]; high [H]) in period 1 (2 to 8 wk of age) by 2 levels of protein and energy intake (low [L]; high [H]) in period 2 (8 to 14 wk of age) to produce similar initial BW for all 4 treatments. Treatments were ML, MH, HL, and HH, indicating moderate or high energy and protein intake during the first period and low or high intake during the second period. The M diet consisted of a standard milk replacer (21.3% CP, 21.3% fat) fed at 1.1% of BW on a DM basis and a 16.5% CP grain mix fed at restricted intake to promote 400 g of average daily gain (ADG), whereas the L diet consisted only of the grain mix. The H diet consisted of a high-protein milk replacer (30.3% CP, 15.9% fat) fed at 2% of BW on a DM basis and a 21.3% CP grain mix available ad libitum. Calves were weaned gradually from milk replacer by 7 wk and slaughtered at 8 (n = 11) or 14 wk of age (n = 41). In periods 1 and 2, ADG and the gain:feed ratio were greater for calves fed the H diet. Calves fed the H diet were taller after both periods 1 and 2. No difference was observed in carcass composition at 8 wk, but at 14 wk calves fed MH and HH had less water and more fat than calves fed ML and HL. Plasma IGF-I concentrations were greatest for calves fed the H diet during either period. Plasma leptin concentrations were increased in calves fed the H diet during period 1 from 4 to 6 wk of age. Increasing energy and protein intake from 2 to 8 wk and 8 to 14 wk of age increased BW, withers height, and gain:feed ratio. Calves fed the H diet from 8 to 14 wk of age had more body fat than calves fed the L diet. Increased energy and protein intake can increase the rate of body growth of heifer calves and potentially reduce rearing costs.  相似文献   

3.
Lactoferrin supplementation to dairy calves   总被引:6,自引:0,他引:6  
Twenty-one Holstein calves (12 bulls, 9 heifers) were used to evaluate the effects of supplemental lactoferrin (0, 1, and 10 g/d) added to colostrum, milk, and milk replacer in a 56-d study. Calves fed lactoferrin (LF) weighed more during wk 2, 3, 4, 5, and 6 than control calves. Calves fed LF had increased preweaning daily weight gains and heart girth gains compared with calves not fed lactoferrin. Calves fed 1 g/d LF had a greater preweaning average daily gain than calves fed 10 g/d of lactoferrin. Hematocrit and serum Fe were unaffected by treatments. Calves were weaned when they had consumed 0.7 kg of calf starter grain for 2 consecutive d and were at least 28 d of age. All calves were weaned by 35 d of age, regardless of starter intake. Calves fed LF consumed more calf starter grain during the preweaning period and met weaning criteria at a younger age. This study indicates that supplementing calf diets with LF is advantageous to calf performance.  相似文献   

4.
Our objectives were to determine the effect of starter crude protein (CP) content on growth of Holstein calves from birth to 10 wk of age in an enhanced early nutrition program, and to compare the enhanced program to a conventional milk replacer program. Calves (64 female, 25 male) were assigned to 3 treatments in a randomized block design: 1) conventional milk replacer (20% CP, 20% fat) plus conventional starter [19.6% CP, dry matter (DM) basis], 2) enhanced milk replacer (28.5% CP, 15% fat) plus conventional starter, and 3) enhanced milk replacer plus high-CP starter (25.5% CP, DM basis). Calves began treatments (n=29, 31, and 29 for treatments 1 to 3) at 3 d of age. Conventional milk replacer (12.5% solids) was fed at 1.25% of birth body weight (BW) as DM daily in 2 feedings from wk 1 to 5 and at 0.625% of birth BW once daily during wk 6. Enhanced milk replacer (15% solids) was fed at 1.5% of BW as DM during wk 1 and 2% of BW as DM during wk 2 to 5, divided into 2 daily feedings. During wk 6, enhanced milk replacer was fed at 1% of BW as DM once daily. Calves were weaned at d 42. Starter was available for ad libitum intake starting on d 3. Starter intake was greater for calves fed conventional milk replacer. For calves fed enhanced milk replacer, starter intake tended to be greater for calves fed enhanced starter. During the weaning period, enhanced starter promoted greater starter DM intake than the conventional starter. Over the 10-wk study, the average daily gain of BW (0.64, 0.74, and 0.80 kg/d) was greater for calves fed enhanced milk replacer with either starter and, for calves fed enhanced milk replacer, tended to be greater for calves fed high-CP starter. Rates of change in withers height, body length, and heart girth were greater for calves fed enhanced milk replacer but did not differ between starter CP concentrations. The postweaning BW for enhanced milk replacer treatments was greater for calves receiving the enhanced starter at wk 8 (73.7, 81.3, and 85.8 kg) and wk 10 (88.0, 94.9, and 99.9 kg). Starter CP content did not affect height, length, or heart girth within enhanced milk replacer treatments. Regression analysis showed that gain of BW during the first week postweaning (wk 7) increased with greater 3-d mean starter intake in the week before weaning. Starter with 25.5% CP (DM basis) provided modest benefits in starter intake (particularly around weaning) and growth for dairy calves in an enhanced early nutrition program compared with a conventional starter (19.6% CP).  相似文献   

5.
The preweaning management of dairy calves over the last 30 yr has focused on mortality, early weaning, and rumen development. Recent studies suggest that nutrient intake from milk or milk replacer during the preweaning period alters the phenotypic expression for milk yield. The objective of this study was to investigate the relationship between nutrient intake from milk replacer and pre- and postweaning growth rate with lactation performance in the Cornell dairy herd and a commercial dairy farm. The analysis was conducted using traditional 305-d first-lactation milk yield and residual lactation yield estimates from a test-day model (TDM) to analyze the lactation records over multiple lactations. The overall objective of the calf nutrition program in both herds was to double the birth weight of calves by weaning through increased milk replacer and starter intake. First-lactation 305-d milk yield and residuals from the TDM were generated from 1,244 and 624 heifers from the Cornell herd and from the commercial farm, respectively. The TDM was used to generate lactation residuals after accounting for the effects of test day, calving season, days in milk, days pregnant, lactation number, and year. In addition, lactation residuals were generated for cattle with multiple lactations to determine if the effect of preweaning nutrition could be associated with lifetime milk yield. Factors such as preweaning average daily gain (ADG), energy intake from milk replacer as a multiple of maintenance, and other growth outcomes and management variables were regressed on TDM milk yield data. In the Cornell herd, preweaning ADG, ranged from 0.10 to 1.58 kg, and was significantly correlated with first-lactation yield; for every 1 kg of preweaning ADG, heifers, on average, produced 850 kg more milk during their first lactation and 235 kg more milk for every Mcal of metabolizable energy intake above maintenance. In the commercial herd, for every 1 kg of preweaning ADG, milk yield increased by 1,113 kg in the first lactation and further, every 1 kg of prepubertal ADG was associated with a 3,281 kg increase in first-lactation milk yield. Among the 2 herds, preweaning ADG accounted for 22% of the variation in first-lactation milk yield as analyzed with the TDM. These results indicate that increased growth rate before weaning results in some form of epigenetic programming that is yet to be understood, but has positive effects on lactation milk yield. This analysis identifies nutrition and management of the preweaned calf as major environmental factors influencing the expression of the genetic capacity of the animal for milk yield.  相似文献   

6.
Seventy-two Holstein calves were used to study the effect of feeding antibiotics or mannan oligosaccharides (MOS) in milk replacer. Calves were fed a 20% protein, 20% fat milk replacer containing antibiotics (400 g/ton neomycin + 200 g/ton oxytetracycline), MOS (4 g of Bio-Mos/d), or no additive (control) for 5 wk. Milk replacer was reconstituted to 12.5% dry matter and fed at 12% of birth weight during wk 1 and 14% of birth weight in wk 2 to 5. Fecal scores were monitored 3 times per week; body weight, heart girth, withers height, hip height, and hip width were measured at birth and weekly to 6 wk of age. Addition of MOS or antibiotics increased the probability of normal scores for fecal fluidity, scours severity, and fecal consistency as compared to control calves during the course of the study. Consumption of calf starter increased at a faster rate in calves fed MOS, and these calves consumed more calf starter after weaning (wk 6), than those fed antibiotic. No treatment differences in growth measures, total blood protein, or blood urea nitrogen were detected during the trial. Addition of MOS or antibiotics to milk replacer improved fecal scores in calves. Feed intake was improved in MOS-fed calves compared to antibiotic-fed calves, but this difference did not result in growth differences during the experimental period. The results suggest that antibiotics in milk replacers can be replaced with compounds such as mannan oligosaccharides to obtain similar calf performance.  相似文献   

7.
Provision of nutrients in appropriate amounts to meet nutrient requirements for growth, production, and reproduction is the basis for modern animal nutrition. Ration formulation systems predict nutrient requirements based on numerous inputs and then predict nutrient supply based on predicted intake and nutrient content of feeds. Energy systems are used to predict energy supply based on gross caloric content of feeds followed by adjustments for digestion and metabolism of ingested energy. Many models of energy supply use static coefficients of digestibility based on nutrient composition of feed. Other models partition digestion dynamically between ruminal and postruminal digestion but use static estimates of intestinal digestibility to predict energy supplied to the animal. In young calves, both ruminal fermentation and intestinal digestion are underdeveloped; therefore, existing models of energy supply might overestimate the energy available before complete gastrointestinal maturation. In a series of experiments, we reported that total-tract digestion of nutrients changes with advancing age and nutrient intake. Total-tract digestion was measured in calves from 3 to 16 wk of age when fed different amounts and types of milk replacers. Calves were also fed different types of calf starter for ad libitum consumption. Total-tract digestibility of protein, fat, neutral detergent fiber, and nonfiber carbohydrate (NFC) was used to calculate the metabolizable energy (ME) in starter. We used nonlinear regression to estimate the contribution of protein and fat from starter and milk replacer before weaning. Early in life, calculated ME of starter was low and increased with increasing intake of NFC. Cumulative intake of NFC was more highly correlated with changing ME values than other indices, including age, intake of milk replacer, or intake of other nutrients in starter. When calves consumed at least of 15 kg of NFC, ME calculated from digestibility measurements was similar to the ME calculated using National Research Council equations and indicated maturation of gastrointestinal digestion. Our data suggest that intake of NFC is critical to gastrointestinal maturation and the calf's ability to extract energy from calf starter.  相似文献   

8.
An alternative protein ingredient based on spray-dried, hydrolyzed red blood cells was evaluated in calf milk replacers. Two experiments were conducted to determine the value of the ingredient on intake, growth, and feed efficiency in dairy calves. In experiment 1, Holstein bull calves (n = 120) were fed calf milk replacer containing 0, 11, 22, or 43% of crude protein as spray dried hydrolyzed red blood cells. Calves were fed 454 g/d of experimental milk replacer reconstituted to 12% dry matter plus a conventional calf starter for 28 d. Body weight gain, intake of milk replacer and calf starter, feed efficiency, fecal scores, and days scouring were unaffected by source of protein. In experiment 2, Holstein calves (n = 69) at the University of Minnesota, Crookston and Waseca were fed milk replacer containing 0, 22, or 43% of crude protein as spray dried hydrolyzed red blood cells. Calves were fed 454 g/d of experimental milk replacer reconstituted to 12% dry matter plus a conventional calf starter containing 0 or 25% alfalfa meal for 35 d. No calves died during the study. Body weight gain, feed efficiency, intake of calf starter and milk replacer, fecal scores, and days scouring were unaffected by increasing hydrolyzed red blood cells in milk replacer. Similar performance of all calves indicated that spray dried hydrolyzed red blood cells can replace up to 43% of crude protein from whey protein concentrate without detrimental effects on animal performance.  相似文献   

9.
The objective of this study was to determine if increasing the energy and protein intake of heifer calves would affect growth rates, age at puberty, age at calving, and first lactation milk yield. A second objective was to perform an economic analysis of this feeding program using feed costs, number of nonproductive days, and milk yield data. Holstein heifer calves born at the Michigan State Dairy Cattle Teaching and Research Center were randomly assigned to 1 of 2 dietary treatments (n = 40/treatment) that continued from 2 d of age until weaning at 42 d of age. The conventional diet consisted of a standard milk replacer [21.5% crude protein (CP), 21.5% fat] fed at 1.2% of body weight (BW) on a dry matter basis and starter grain (19.9% CP) to attain 0.45 kg of daily gain. The intensive diet consisted of a high-protein milk replacer (30.6% CP, 16.1% fat) fed at 2.1% of BW on a dry matter basis and starter grain (24.3% CP) to achieve 0.68 kg of daily gain. Calves were gradually weaned from milk replacer by decreasing the amount offered for 5 and 12 d before weaning for the conventional and intensive diets, respectively. All calves were completely weaned at 42 d of age and kept in hutches to monitor individual starter consumption in the early postweaning period. Starting from 8 wk of age, heifers on both treatments were fed and managed similarly for the duration of the study. Body weight and skeletal measurements were taken weekly until 8 wk of age, and once every 4 wk thereafter until calving. Calves consuming the intensive diet were heavier, taller, and wider at weaning. The difference in withers height and hip width was carried over into the early post-weaning period, but a BW difference was no longer evident by 12 wk of age. Calves fed the intensive diet were younger and lighter at the onset of puberty. Heifers fed the high-energy and protein diet were 15 d younger at conception and 14 d younger at calving than heifers fed the conventional diet. Body weight after calving, daily gain during gestation, withers height at calving, body condition score at calving, calving difficulty score, and calf BW were not different. Energy-corrected, age-uncorrected 305-d milk yield was not different, averaging 9,778 kg and 10,069 kg for heifers fed the conventional and intensive diets, respectively. However, removing genetic variation in milk using parent average values as a covariate resulted in a tendency for greater milk from heifers fed the intensive diet. Preweaning costs were higher for heifers fed the intensive diet. However, total costs measured through first lactation were not different. Intensified feeding of calves can be used to decrease age at first calving without negatively affecting milk yield or economics.  相似文献   

10.
Lifting the preweaning milk restriction in dairy calves has been causally associated with beneficial effects on growth and future lactation performance. However, the biological mechanisms linking early-life nutrient supply and future performance remain insufficiently understood. Thus, the objective of this study was to characterize growth and the metabolic profiles of calves fed a restricted (RES) and an elevated (ELE) milk supply preweaning. A total of 86 female Holstein Friesian calves were blocked in pairs by maternal parity and received identical colostrum supply within block. Treatments randomized within block consisted of a milk replacer (MR; 24% crude protein, 18% crude fat, and 45% lactose) supplied at either 5.41 Mcal of ME in 8 L of MR/d (ELE) or 2.71 Mcal of ME in 4 L of MR/d (RES) from d 2 after birth until they were stepped down by 50% during wk 7 and fully weaned at wk 8. All calves had ad libitum access to pelleted calf starter (17.3% crude protein, 24.4% neutral detergent fiber, 2.0% crude fat, and 18.2% starch), chopped wheat straw, and water. At 2 and 49 d of age, blood samples were taken for metabolomics analysis. The ELE group by design consumed more milk replacer, resulting in a lower starter intake and a greater body weight and average daily gain. The ELE calves consumed 20.7% more ME and 9.7% more crude protein. However, efficiency of growth was not different between groups. Metabolomic profiling using 908 identified metabolites served to characterize treatment-dependent biochemical differences. Principal component analysis revealed clearly distinct metabolic profiles at 49 d of age in response to preweaning milk supply. Changes in energy (fatty acid metabolism and tricarboxylic acid metabolites), protein (free AA, dipeptides, and urea cycle), and liver metabolism (bile acid and heme metabolism) were the main effects associated with the dietary differences. The ELE group consumed proportionately more glucogenic nutrients via milk replacer, whereas the RES group consumed proportionately more ketogenic nutrients from the digestion of the calf starter, comprising a larger portion of total intake. Associated with the higher growth rate of the ELE group, hepatic changes were expressed as differences in bile acid and heme metabolism. Furthermore, energy metabolism differences were noted in fatty acid and AA metabolism and the urea cycle. The metabolic profile differences between the ELE and RES groups reflect the broad differences in nutrient intake and diet composition and might point to which metabolic processes are responsible for greater dairy performance for cows fed a greater milk supply preweaning.  相似文献   

11.
《Journal of dairy science》2022,105(10):8087-8098
During weaning, withdrawal of milk replacer is not directly compensated for by an increase in solid feed intake. Therefore, greater fat inclusion in the starter might mitigate this temporary dietary energy decline. However, fat inclusion in solid feeds may generally limit rumen fermentability and development. To address these potentially conflicting outcomes, we conducted 2 experiments to evaluate the effect of supplementing a high-fat extruded pellet mixed with a calf starter on feed intake, performance, and nutrient digestibility in calves. In experiment 1, 60 Holstein bull calves were blocked by serum IgG (2,449 ± 176 mg/dL) and date of arrival (2.5 ± 0.5 d of age). Within each block, calves were randomly assigned to 1 of 3 treatments: a standard control calf starter (CON; 3.1% fat) and mixtures of CON with 10% inclusion of 1 of 2 different high-fat extruded pellets containing 85% of either hydrogenated free palm fatty acids (PFA, 7.1% fat) or hydrogenated rapeseed triglycerides (RFT, 6.7% fat). Calves were offered milk replacer up to 920 g/d until 42 d of age, followed by a gradual weaning period of 7 d. Calves had ad libitum access to the starter diets, straw, and water. No differences were observed between CON, PFA, and RFT calves on body weight (BW) or average daily gain (ADG) until 49 d of age. From weaning (50 d) until 112 d, PFA calves had a greater BW and ADG than RFT and CON animals. Moreover, PFA calves had the highest intakes of starter, straw, calculated metabolizable energy, and crude protein after weaning. Overall, no differences were present in blood β-hydroxybutyrate and glucose concentrations between treatments; however, calves in the RFT treatment had a higher concentration of insulin-like growth factor-1. In experiment 2, 24 Holstein bull calves at 3 mo of age were assigned to 1 of 8 blocks based on arrival BW and age. Within each block, calves were randomly assigned to 1 of the 3 treatments previously described for experiment 1. Calves on the RFT treatment had the lowest total-tract apparent dry matter and fat digestibility, potentially explaining the differences in performance observed between PFA and RFT calves. Inclusion of the PFA pellet at 10% with a calf starter improved BW, solid feed, and energy intake after weaning. However, these benefits were conditioned by fat source and its digestibility.  相似文献   

12.
Two studies were conducted to assess the effect of protein source and microencapsulated sodium butyrate (MSB) inclusion in pelleted starter mixtures on growth performance, gain to feed (G:F) ratio, nutrient digestibility, and selected blood metabolites in calves. In study 1, 28 Holstein bull calves (8.7 ± 0.8 d of age and 43.0 ± 4.4 kg; mean ± SD) were allocated to 1 of 4 treatments in a 2 × 2 factorial arrangement and fed a pelleted starter mixture containing canola meal (CM, 35% as fed) or soybean meal (SM, 24% as fed) as the main source of protein, with or without supplemental MSB (0.3% as fed). Starter mixtures were formulated to be similar for crude protein, Lys, and Met, and were fed ad libitum. Calves were weaned after 42 d of milk replacer feeding (51.7 ± 0.8 d of age) and observed for another 21 d. Furthermore, selected blood metabolites were measured on d 21, 42, and 63 of the study, and nutrient digestibility was measured after weaning. In study 2, 60 Holstein heifer calves (9.1 ± 0.8 d of age and 43.2 ± 4.2 kg) were assigned to the same treatments as in study 1. The calves were weaned after 49 d of milk replacer feeding (59.1 ± 0.8 d of age) and observed for an additional 14 d. Milk replacer and starter mixture intake and fecal score were recorded daily, whereas body weight (BW) was recorded weekly. In study 1, calves fed starter mixtures containing CM had or tended to have lesser preweaning starter intake, weaning average daily gain (ADG), weaning and overall G:F ratio, and postweaning total-tract dry matter digestibility, as opposed to those fed starter mixtures with SM. However, these differences did not affect overall starter intake, overall ADG, or final BW. Supplementation with MSB only tended to increase the preweaning starter mixture intake. In study 2, heifer calves that were fed starter mixtures with CM had greater cumulative starter intake after weaning, but the protein source in the starter mixture had no effect on ADG, BW, or G:F ratio. Inclusion of MSB in starter mixtures for calves tended to decrease postweaning starter mixture intake. In conclusion, use of CM or SM as the main source of protein in starter mixture resulted in similar growth performance of bull and heifer calves; however, CM use in starter mixtures reduced starter intake, ADG, and G:F ratio at least at some points of rearing. Supplementation of MSB had minor effects on the growth performance of calves.  相似文献   

13.
The influence of age, carbohydrate-fat ratios of milk replacers, and development of ruminal function on growth, health, and blood glucose concentrations were evaluated in calves. Colostrum-fed, 3-day-old Holstein bull calves were fed to 12 wk on one of three dietary treatments: 1) a high carbohydrate, low fat (60.5% glucose, 9.5% lactose, and 3% lard) milk replacer; 2) a low carbohydrate, high fat (23% glucose, 12.5% lactose, and 30% lard) milk replacer; and 3) weaning at 6 wk of age from high-fat replacer to a standard calf starter. The high fat milk replacer was superior to low fat milk replacer for total weight gains and efficiency of feed conversion. Rates of weight gain of starter calves were similar to those of calves fed low fat. Calves fed the diet with low fat had a high incidence of diarrhea, an occasional outbreak of a yeast-related ethanol intoxication syndrome, and high concentrations of glucose in urine. Irrespective of milk replacer composition or development of ruminal function, plasma and whole blood glucose concentrations declined rapidly in the first 6 wk. Corpuscular glucose declined steadily with age in all calves. This age-related decrease of blood glucose concentration of calves seems to be a constitutive phenomenon.  相似文献   

14.
Forty-four Holstein calves were fed a direct-fed microbial (DFM) and 1 of 2 milk replacers to evaluate calf performance and growth. Treatments were (1) a control milk replacer [22:20; 22% crude protein (CP) and 20% fat], (2) an accelerated milk replacer (27:10; 27% CP and 10% fat), (3) the control milk replacer with added DFM (22:20+D), and (4) the accelerated milk replacer with added DFM (27:10+D). Dry matter intake, rectal temperatures, respiration scores and rates, and fecal scores were collected daily. Body weight, hip and withers height, heart girth, blood, and rumen fluid samples were collected weekly. Effects of treatment, sex, week, and their interactions were analyzed. Calves fed an accelerated milk replacer, regardless of DFM supplementation, consumed more CP and metabolizable energy in the milk replacer. No treatment differences were found for starter intake or intake of neutral detergent fiber or acid detergent fiber in the starter. Calves fed the accelerated milk replacer had greater preweaning and weaning body weight compared with calves fed the control milk replacer. Average daily gain was greater during the preweaning period for calves fed the accelerated milk replacer, but the same pattern did not hold true during the postweaning period. Feed efficiency did not differ among treatments. Hip height tended to be and withers height and heart girth were greater at weaning for calves fed the accelerated milk replacer compared with calves fed the control milk replacer. Fecal scores were greatest in calves fed DFM. Overall acetate, propionate, butyrate, and n-valerate concentrations were lower in calves fed the accelerated milk replacer, but DFM did not have an effect. Rumen pH was not different. Blood metabolites were unaffected by DFM supplementation, but calves fed the accelerated milk replacer had increased partial pressure of CO2, bicarbonate, and total bicarbonate in the blood. Direct-fed microbial supplementation did not appear to benefit the calf in this trial  相似文献   

15.
《Journal of dairy science》2019,102(12):11016-11025
Newborn Holstein male calves (n = 50) born on a single dairy farm were assigned randomly at birth to receive 3 feedings of 1.8 L of pooled maternal colostrum (MC) at 1, 6, and 12 h of age or 1 feeding of 500 g of a colostrum replacer reconstituted to 1.8 L at 1 h of age, followed by 2 feedings of 227 g of a commercial milk replacer (MR) reconstituted to 1.8 L at 6 and 12 h of age (CR). All feedings were administered by esophageal feeder. At 2 to 3 d of age, calves were transported to the experimental facility and assigned within colostrum group to receive 0.66 kg/d dry matter (DM) of MR to 39 d, and then 0.33 kg/d to 42 d (MRM) or 0.77 kg/d of MR DM to d 13, 1.03 kg/d for 22 d, and 0.51 kg/d for 7 d (MRH). The MR contained 25.8% crude protein and 17.6% crude fat (DM basis) and was based on whey proteins and lard as the primary fat source. Calf starter (21.7% crude protein, 15.7% neutral detergent fiber, 37.4% starch, DM basis) and water were available for ad libitum consumption throughout the 56-d study. Serum IgG and total protein were measured at 2 to 3 d of age. Intakes of MR and calf starter were monitored daily. Calf health and fecal scores were also monitored daily. Body weight was measured weekly, and hip width and body condition score were monitored every 2 wk. Digestion of DM, organic matter, crude protein, and ether extract were determined at 1 and 3 wk from 5 calves randomly selected within treatment and using chromic oxide as a digestibility marker added to the MR. Calves fed CR had lower serum IgG and total protein than calves fed MC. Also, calves fed CR grew more slowly, consumed less calf starter, and were less efficient to 56 d than calves fed MC. The number of days calves were treated with veterinary medications was higher when calves were fed CR. Calves fed MC-MRH gained more BW than other calves from 3 to 8 wk of age. Calves fed CR-MRH consumed less calf starter than other calves during wk 7 and 8. Digestion of nutrients at 1 and 3 wk of the study was unaffected by type of colostrum or level of MR fed and did not change from 1 to 3 wk. Over the first 2 mo of life, the calves fed MRH consumed less calf starter than calves fed MRM, but average daily gain or hip width change did not differ. One feeding of CR followed by 2 feedings of MR in the first 24 h likely reduced absorption of IgG from CR and contributed to differences in health and growth. Differences in animal performance observed in this study were unrelated to MR digestibility.  相似文献   

16.
Effects of spray-dried whole egg and biotin in calf milk replacer   总被引:3,自引:0,他引:3  
Holstein bull calves (n = 120) were fed milk replacers containing 0, 10, or 20% of the formulation (0, 22, or 44% of crude protein) as spray-dried whole egg powder in a 56-d feeding trial. Milk replacer was medicated with oxytetracycline and neomycin and was fed from d 1 to 42 of the study in a phase-fed program. All experimental milk replacers were supplemented with B vitamins, except biotin. One half of all calves were supplemented with 1 mg/kg of supplemental biotin to determine whether avidin in the egg protein product inhibited growth. Increasing spray-dried whole egg caused a linear reduction in body weight, body weight gain at 28 and 56 d of the study, calf starter intake, and feed efficiency. Calves fed milk replacers containing 0, 10, and 20% spray-dried whole egg gained an average of 486, 369, and 302 g/d, respectively, during the 56-d trial. Efficiency of feed utilization was 446, 318, and 231 g of body weight gain per kilogram of dry matter intake. Improvement in body weight and feed efficiency occurred when calves began consuming calf starter on d 29. Digestibility of protein or fat from egg may have been reduced during the trial; however, the addition of biotin to the milk replacer did not influence animal performance, suggesting that avidin in spray-dried whole egg was not responsible for impaired performance. The spray-dried whole egg product used in this study did not provide nutrients to support adequate growth of milk-fed calves.  相似文献   

17.
This study compared conventional and intensified milk replacer feeding regimens on growth, intake, respiratory and fecal scores, vaccination response, and neutrophil mRNA levels. Holstein calves were randomly assigned to a 10-wk study on d 2 of life. Treatments were conventional (CON; n=8) and intensified (INT; n=7) milk replacer feeding programs. Conventional calves were fed a 20.8% crude protein and 21.0% fat milk replacer at 1.25% of birth body weight (BW) from wk 1 to 6 of life and 0.625% of birth BW during wk 7. A 29.3% crude protein and 16.2% fat milk replacer was fed to INT calves at 1.5% of birth BW during wk 1, 2% of current BW from wk 2 to 6, and 1% of current BW during wk 7. All calves were given milk replacer twice daily during wk 1 to 6, once daily during wk 7, and were weaned completely during wk 8. Calf starter intake was measured daily through wk 8. Body weight and withers height were measured weekly. Fecal and respiratory scores were recorded twice daily at feeding. Calves were vaccinated against ovalbumin at the end of wk 1, 3, and 5. Blood samples were collected at the end of wk 1, 3, 5, and 8 for analysis of serum anti-ovalbumin IgG concentration and for isolation of neutrophils. Quantitative PCR was used to measure neutrophil mRNA levels of 7 functionality genes. Treatment did not affect total DMI or anti-ovalbumin IgG response. Intensified milk replacer feeding increased average daily gain, protein intake, fat intake, and feed efficiency compared with the CON feeding program. Compared with CON calves, INT calves had greater fecal scores, indicating looser feces and greater respiratory scores, indicating more respiratory problems. Calves assigned to the INT treatment had increased neutrophil mRNA levels of L-selectin, and at wk 8, neutrophil cytosolic factor 1 was increased and toll-like receptor 4 tended to be increased compared with CON calves. This suggests greater activation of neutrophils in INT calves postweaning, but differences were relatively small and levels of the other 4 genes were unaffected. An INT milk replacer feeding program increased growth, fecal scores, and respiratory scores preweaning, increased mRNA levels of 2 neutrophil genes postweaning, and did not affect vaccination response.  相似文献   

18.
The effects of feeding two levels of supplemental fat and extra milk replacer solids on Holstein calves housed in hutches during the winter were investigated. Fifty calves (10 per treatment) were assigned to the following dietary treatments: 1) milk replacer (control) reconstituted to 12.5% DM fed at 10% of BW (adjusted weekly), 2) same as treatment 1 plus 113 g/d of supplemental fat, 3) milk replacer reconstituted to 15% DM and fed at 10% of BW (adjusted weekly), 4) same as treatment 1 plus 226 g/d of supplemental fat, and 5) milk replacer reconstituted to 15% DM fed at 14% of BW (adjusted weekly). Half the amount of milk replacer consumed during wk 4 was fed during wk 5, and calves were weaned to dry feed at 35 d of age. A pelleted starter was offered for ad libitum intake throughout the 42-d trial. Gains in BW were greater for calves fed 226 than 113 or 0 g/d of supplemental fat (d 3 to 28). Calves fed milk replacer reconstituted to 15% DM at 14% of BW had greater BW gains during d 3 to 28 than control. Starter consumption was similar between groups receiving 113 and 0 g/d of fat supplement but lower in the group fed 226 g/d. Extra milk replacer solids in diets increased fecal scores to levels greater than those of calves in other groups. The benefit of fat supplementation of milk replacers was manifested as increased BW gain during the 1st mo of life.  相似文献   

19.
Apparent total-tract digestibility data from 3 published studies with calves from 0 to 4 mo of age were used to evaluate National Research Council (NRC; 2001) estimates of digestible energy (DE) and metabolizable energy (ME) in calf starters (CS). Calves (n = 83) or pens of calves (n = 24) were used in model development. In each study, 48 Holstein bull calves (2–3 d of age at initiation of each study) were fed varying amounts of milk replacer with CS and water for ad libitum consumption. Calf starters varied in nutrient composition and physical form (pelleted, textured, or mixed with 5% grass hay and fed as a total mixed ration). Apparent total-tract digestibility was measured at various ages. Feed and feces were collected from 20 calves per trial during 5-d collection periods during the first 56 d of each trial. In 2 studies, calves were grouped in pens (4 calves/pen) for a second 56-d measurement period. Fecal collections were repeated occasionally during the second period. Total-tract digestibilities (n = 207) of neutral detergent fiber, nonfiber carbohydrates (NFC), crude protein (CP), and fat were used to calculate ME in CS using equations from the 2001 Dairy NRC. Contributions of digestible CP and fat from milk replacer before weaning were estimated using nonlinear regression and removed from estimates of fat and CP digestibility in CS. Digestion of most nutrients in CS and calculated DE and ME in CS were low early in life and increased with increasing cumulative NFC intake. The natural logarithm of cumulative NFC intake, measured from d 0 to the end of each digestibility period, accounted for more variation in CS nutrient digestibilities, DE and ME estimates compared with daily NFC intake or intake of other nutrients, intake of milk replacer, or age of calf. Calculated ME values in CS were similar to those predicted by NRC after calves consumed approximately 15 kg of cumulative NFC or 28 kg of cumulative dry matter intake (assuming 53% NFC in CS). Current estimates of energy in CS fed to 4 mo of age may overestimate contribution of dry feed to overall energy metabolism in young calves.  相似文献   

20.
The objective of this study was to evaluate the effect of feeding calf starter on rumen pH of dairy calves during weaning transition. Twenty Holstein bull calves were paired into 10 blocks by starting date of the study and body weight, and fed either milk replacer and hay (MR) or MR, hay, and a commercial texturized calf starter (MR+S) in a randomized complete block design. All calves were fed 750 g/d of milk replacer as the basal diet. Calves on MR+S treatment were also fed a calf starter ad libitum to maintain similar energy intake between calves within blocks, and MR calves were fed additional milk replacer that was equivalent to energy from calf starter intake. When MR+S calves consumed a calf starter at 680 g/d for 3 consecutive d, rumen pH of a MR+S calf and his MR counterpart was measured continuously for 3 d using a small ruminant rumen pH measurement system. Treatment did not affect minimum pH, mean pH, maximum pH, standard deviation of mean pH, and duration or area under pH 5.8, indicating that calf starter consumption did not appear to affect rumen pH. However, hay intake was negatively correlated to area under pH 5.8, with a breakpoint at 0.080 kg/d intake, suggesting hay intake might play an important role in mitigating ruminal acidosis in dairy calves during weaning transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号