首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
杨少伟 《市政技术》2015,(2):172-174,204
为了确定在常温下能够稳定用于畜禽养殖废水深度处理的亚硝化反应器类型,在常温、p H值为8.0左右,进水氨氮质量浓度为150 mg/L左右,COD质量浓度为200 mg/L左右的条件下,采用接触氧化法反应器和活性污泥法反应器进行同步对比试验。结果表明,二者对COD的去除效率均稳定在60%以上,其中接触氧化法反应器的最高去除率为75.38%,活性污泥法反应器的最高去除率为67.18%;氨氮在接触氧化法反应器中更易转化成亚硝酸盐氮,亚硝酸盐氮含量最高达84.61 mg/L,而在活性污泥法反应器中,氨氮更易转化成硝酸盐氮,硝酸盐氮含量最高达129 mg/L,亚硝酸盐氮含量最高仅为8.41 mg/L。说明在相同的试验条件下,在接触氧化法反应器中更易实现亚硝化过程,故最终确定接触氧化法反应器作为畜禽养殖废水深度处理的亚硝化反应器。  相似文献   

2.
在SBR反应器中,采用模拟废水和好氧活性污泥富集培养异养硝化菌,并对分离、筛选出的菌株进行脱氮性能的检测。在进水氨氮由100 mg/L逐渐增至1 396 mg/L的过程中,对NH3-N的去除率始终能达到100%,而对TN的去除率由初期的零逐渐增至后期的45.7%,说明在后期发生了同步硝化反硝化作用(SND),系统中可能存在异养硝化菌。在筛选出的15株硝化菌中,菌株A1和T6经过1周的好氧培养后,对COD的去除率分别为56.0%和72.3%,对氨氮的去除率分别为71.2%和85.8%,且仅检测到痕量的亚硝酸盐氮和硝酸盐氮,由此证明菌株A1和T6为异养硝化菌。  相似文献   

3.
为研究异养硝化菌Y7和Y16对低温水的处理效果,构建生物增强活性炭(BEAC)滤柱,其中A滤柱接种Y7菌株,B滤柱接种Y16菌株,C滤柱接种Y7+ Y16混菌,以不接菌活性炭滤柱(D)作为对照.在5℃下研究了工艺对氨氮和CODMn的去除效果、亚硝酸盐氮与硝酸盐氮的积累特征以及进水DO含量和滤速对BEAC工艺运行效果的影响.结果表明,BEAC工艺对氨氮的去除效果优于GAC,其中C滤柱对氨氮的降解能力最强,运行期间并未出现硝酸盐氮与亚硝酸盐氮积累现象,启动期间对氨氮的最大去除率达到26.88%,对CODMn的最大去除率达到85.12%.进水溶解氧浓度对各滤柱去除氨氮和CODMn几乎没有影响;低滤速有利于BEAC对氨氮的降解,但对去除CODMn的影响较小.  相似文献   

4.
喷射环流反应器同步硝化反硝化机理的研究   总被引:2,自引:0,他引:2  
喷射环流反应器在好氧条件下具有良好的脱氮性能,其对氨氮和总氮的去除率分别达到80%和70%以上,且两者的去除率成正比.试验测定了反应器出水中NOx^--N的含量,结果表明出水中的氮主要以氨氮和亚硝酸盐氮的形式存在,证明该反应器在硝化过程中实现了对亚硝酸盐的积累.反应器的脱氮效果随进水C/N值的增加而提高,证明了异养硝化细菌的存在.对废水处理过程中产生的废气进行气相色谱分析,结果表明废气中氮气的含量比空气的增加了0.24%,证明反应器中发生了反硝化反应.综合试验结果表明,喷射环流反应器中的脱氮机理为亚硝酸盐型同步硝化反硝化.  相似文献   

5.
喷射环流反应器在好氧条件下具有良好的脱氮效能,其对氨氮和总氮的去除率分别达到80%和70%以上,且两者的去除率成正比.试验测定了反应器出水中NO-x-N含量,结果表明出水中氮主要以氨氮和亚硝酸盐氮的形式存在,证明该反应器在硝化过程中实现了亚硝酸盐的积累.反应器中脱氮率随进水C/N值的增加而升高,证明了异养硝化细菌的存在.对废水处理过程中产生的废气进行了气相色谱分析,结果表明废气中N2含量相比于空气样品中增加了0.24%,证明了反应器中反硝化过程的发生.试验结果表明,喷射环流反应器中脱氮机理为亚硝酸盐型同步硝化反硝化.  相似文献   

6.
生物膜电极工艺去除微污染源水中氨氮的研究   总被引:2,自引:0,他引:2  
采用生物膜电极工艺去除微污染源水中的氨氮.在好氧区利用金属阳极电解产氧,在硝化细菌的作用下使氨氮转化为硝酸盐氮或亚硝酸盐氮;在缺氧区利用碳棒作为阴极电解产氢,实现反硝化脱氮.试验结果表明:C/N、电流强度、氨氮浓度、进水流量等对去除总氮均有影响;在流量为3 L/d、无外界供氧、电流强度为19.5 mA、C/N为1的条件下,当进水COD为10 mg/L、氨氮为7 mg/L时,对总氮的去除率可达95.6%,显著改善了水质.  相似文献   

7.
短程硝化/厌氧氨氧化/全程硝化工艺处理焦化废水   总被引:1,自引:0,他引:1  
通过对短程硝化和厌氧氨氧化工艺的研究,开发了短程硝化/厌氧氨氧化/全程硝化(O1/A/O2)生物脱氮新工艺并用于焦化废水的处理.控制温度为(35±1)℃、DO为2.0~3.0mg/L,第一级好氧连续流生物膜反应器在去除大部分有机污染物的同时还实现了短程硝化.考察了HRT、DO和容积负荷对反应器运行效果的影响.结果表明,当氨氮容积负荷为0.13~0.22gNH4+-N/(L·d)时,连续流反应器能实现短程硝化并有效去除氨氮.通过控制一级好氧反应器的工艺参数,为厌氧反应器实现厌氧氨氧化(ANAMMOX)创造条件.结果表明,在温度为34℃、pH值为7.5~8.5、HRT为33 h的条件下,经过115 d成功启动了厌氧氨氧化反应器.在进水氨氮、亚硝态氮浓度分别为80和90 mg/L左右、总氮负荷为160 mg/(L·d)时,对氨氮和亚硝态氮的去除率最高分别达86%和98%,对总氮的去除率为75%.最后在二级好氧反应器实现氨氮的全程硝化,进一步去除焦化废水中残留的氨氯、亚硝态氮和有机物.O1/A/O2工艺能有效去除焦化废水中的氨氮和有机物等污染物,正常运行条件下的出水氨氮<15 mg/L、亚硝态氮<1.0 mg/L,COD降至124~186 mg/L,出水水质优于A/O生物脱氮工艺的出水水质.  相似文献   

8.
接种污泥对厌氧氨氧化反应器启动特性的影响   总被引:1,自引:0,他引:1  
采用两套相同的ASBR系统,分别接种好氧硝化污泥和自养反硝化污泥,在模拟废水的pH值为7.6~7.9、温度为32 ℃的条件下,分别运行176 d和170 d后,均成功启动了厌氧氨氧化反应器.在稳定运行阶段,其总氮容积负荷分别为0.147和0.11 kgN/(m3·d),对总氮的平均去除率分别为84.81%和81.57%.两组反应器内氨氮和亚硝态氮的减少量与硝态氮的生成量之比分别为1:1.08:0.31和1:1.18:0.33.接种了好氧硝化污泥的反应器启动更快,且对氨氮的去除效果更好.  相似文献   

9.
A/O SBR中同步硝化反硝化除磷颗粒污泥的富集   总被引:6,自引:0,他引:6  
以聚糖菌颗粒污泥为接种污泥,在厌氧/好氧SBR中成功富集了具有同步硝化反硝化除磷效果的颗粒污泥。结果表明,培养过程中,污泥总磷含量、厌氧释磷量及磷酸盐去除率的提高表明反应器中聚磷菌逐渐替代聚糖菌成为优势菌种;培养末期颗粒污泥的粒径为600~1000μm,SVI为48mL/g,有机物主要在厌氧阶段被去除并以胞内聚合物(PHB)的形式储存,厌氧阶段对TOC的去除率为87%,对TOC的总去除率为90%,对磷酸盐的去除率为95.6%;氮的去除是在好氧条件下经同步硝化反硝化完成的,且PHB为主要的反硝化碳源,对氨氮的去除率为99.3%,对总氮的去除率为85.5%。  相似文献   

10.
悬浮载体生物膜反应器的亚硝酸型硝化研究   总被引:2,自引:0,他引:2  
采用多孔聚合物载体生物膜反应器对亚硝酸型硝化进行了研究,考察了连续流情况下pH、DO和水力停留时间(HRT)对氨氮降解和亚硝化反应的影响.在进水氨氮浓度为420mg/L、温度为25℃的情况下,当HRT为24h、DO为2mg/L、pH值为8时,对氨氮的去除率>75%,亚硝酸盐氮的积累率达到了70%以上,实现了对氨氮的高效去除和稳定的亚硝酸盐氮积累.间歇试验结果表明,亚硝酸盐氮的生成速率为5.868 4 mg/(L·h),而硝酸盐氮的生成速率仅为0.9931mg/(L·h),即生物膜上氨氧化菌的数量和活性明显高于亚硝酸盐氧化菌的.  相似文献   

11.
Downing LS  Nerenberg R 《Water research》2008,42(14):3697-3708
The hybrid (suspended and attached growth) membrane biofilm process (HMBP) is a novel method to achieve total nitrogen removal from wastewater. Air-filled hollow-fiber membranes are incorporated into an activated sludge tank, and a nitrifying biofilm develops on the membranes, producing nitrite and nitrate. By suppressing bulk aeration, the bulk liquid becomes anoxic, and the nitrate/nitrite can be reduced with influent BOD. The key feature that distinguishes the HMBP from other membrane-aerated processes is that it is hybrid; heterotrophic bacteria are kept mainly in suspension by maintaining low bulk liquid BOD concentrations. We investigated the HMBP's performance under a variety of BOD and ammonium loadings, and determined the dominant mechanisms of nitrogen removal. Suspended solids increased with the BOD loadings, maintaining low bulk liquid BOD concentrations. As a result, nitrification rates were insensitive to the BOD loadings, remaining at 1gNm(-2)day(-1) for BOD loadings ranging from 4 to 17gBODm(-2)day(-1). Nitrification rates decreased during short-term spikes in bulk liquid BOD concentrations. Shortcut nitrogen removal was confirmed using microsensor measurements, showing that nitrite was the dominant form of oxidized nitrogen produced by the biofilm. Fluorescence in situ hybridization (FISH) showed that ammonia oxidizing bacteria (AOB) were dominant throughout the biofilm, while nitrite oxidizing bacteria (NOB) were only present in the deeper regions of the biofilm, where the oxygen concentration was above 2mg/L. Denitrification occurred mainly in the suspended phase, instead of in the biofilm, decreasing the potential for biofouling. When influent BOD concentrations were sufficiently high, full denitrification occurred, with total nitrogen (TN) removal approaching 100%. These results suggest that the process is well-suited for achieving concurrent BOD and TN removal in activated sludge.  相似文献   

12.
Ruiz G  Jeison D  Chamy R 《Water research》2003,37(6):1371-1377
The objective of this paper was to determine the best conditions for partial nitrification with nitrite accumulation of simulated industrial wastewater with high ammonia concentration, lowering the total oxygen needed in the nitrification step, which may mean great saving in aeration. Dissolved oxygen (DO) concentration and pH were selected as operational parameters to study the possibility of nitrite accumulation not affecting overall ammonia removal. A 2.5L activated sludge reactor was operated in nitrification mode, feeding a synthetic wastewater simulating an industrial wastewater with high ammonia concentration. During the start-up a pH of 7.85 and a DO of 5.5mg/L were used. The reactor was operated until stable operation was achieved at final nitrogen loading rate (NLR) of 3.3kgN- NH(4)(+)/m(3)d with an influent ammonia concentration of 610mg N-NH(4)(+)/L.The influence of pH was studied in continuous operation in the range of 6.15-9.05, changing the reactor pH in steps until ammonia accumulation (complete nitrification inhibition) took place. The influence of DO was studied in the same mode, changing the DO in steps from 5.5 to 0.5mg/L.The pH was not a useful operational parameter in order to accumulate nitrite, because in the range of pH 6.45-8.95 complete nitrification to nitrate occurs. At pH lower than 6.45 and higher than 8.95 complete inhibition of nitrification takes place. Setting DO concentration in the reactor at 0.7mg/L, it was possible to accumulate more than 65% of the loaded ammonia nitrogen as nitrite with a 98% ammonia conversion. Below 0.5mg/L of DO ammonia was accumulated and over a DO of 1.7mg/L complete nitrification to nitrate was achieved.In conclusion, it is possible under the conditions of this study, to treat high ammonia synthetic wastewater achieving an accumulation of at least 65% of the loaded nitrogen as nitrite, operating at a DO around 0.7mg/L. This represents a reduction close to 20% in the oxygen necessary, and therefore a considerable saving in aeration.  相似文献   

13.
A preliminary investigation is described on the application of calorimetry as a sensitive technique to evaluate nitrifying activity in activated sludge. Calorimetric profiles (thermograms) related to heat dissipation due to biological nitrification reactions (ammonia or nitrite consumption) have been interpreted. Correlations between calorimetric data and the main process variables, i.e. ammonia and nitrite concentration and oxygen uptake, have been verified, and confirm the potential of calorimetry to investigate, monitor and control even weakly exothermic biological processes like autotrophic nitrification. Heat yields (Y(Q/i)) for ammonia, nitrite, and oxygen, defined as the heat released per unit amount of converted reactant, have been separately evaluated. Moreover, calorimetric experiments on activated sludge from a full-scale nitrogen removal wastewater treatment plant have been carried out and kinetic parameters for both ammonia and nitrite oxidising bacteria have been estimated.  相似文献   

14.
Zhou Y  Pijuan M  Yuan Z 《Water research》2008,42(12):3207-3217
A novel 2-sludge 3-stage process using a combination of granular sludge and biofilm was developed to achieve biological removal of nitrogen and phosphorus from nutrient-rich wastewater. The system consists of a granular sequencing batch reactor (SBR) working under alternating anaerobic/anoxic conditions supplemented with a short aerobic phase and an aerobic biofilm SBR. The wastewater is first fed to the granular SBR reactor, where easily biodegradable carbon sources are taken up primarily by polyphosphate accumulating organisms (PAOs). The supernatant resulting from quick settling of the granular sludge is then fed to the biofilm SBR for nitrification, which produces oxidized nitrogen that is returned to the granular reactor for simultaneous denitrification and phosphorus removal. While maximizing the utilization of organic substrates and reducing operational costs, as do other 2-sludge processes previously reported in literature, the proposed system solves the bottleneck problem of traditional 2-sludge systems, namely high effluent ammonia concentration, due to its high-volume exchange ratios. An ammonia oxidation rate of 32 mg N/Lh was achieved in the biofilm SBR, which produced nitrite as the final product. This nitrite stream was found to cause major inhibition on the anoxic P uptake and also to result in the accumulation of N(2)O. These problems were solved by feeding the nitrite-containing stream continuously to the granular reactor in the anoxic phase. With a nitrogen and phosphorus removal efficiency of 81% and 94%, respectively, the system produces an effluent that is suitable for land irrigation from a wastewater stream containing 270 mg N/L of total nitrogen and 40 mg P/L of total phosphorus.  相似文献   

15.
Batch test were performed to assess nitrite removal, nitrate formation, CO2 fixation, gaseous nitrogen production and microbial density in activated sludge exposed to volatile fatty acid (VFA) mixtures. Nitrite removal and nitrate formation were both affected by the presence of VFAs, but to different degrees. Nitrate formation rates were reduced to a greater extent (79%) than nitrite removal rates (36%) resulting in an apparent unbalanced nitrite oxidation reaction. Since the total bacterial density and the nitrite oxidizing bacteria (NOB, Nitrospira) concentration remained essentially constant under all test conditions, the reduction in rates was not due to heterotrophic uptake of nitrogen or to a decrease in the NOB population. In contrast to the nitrogen results, VFAs were not found to impact CO2 fixation efficiency. It appeared that nitrite oxidation occurred when VFAs were present since the oxidation of nitrite provides energy for CO2 fixation. However, nitrate produced from the oxidation of nitrite was reduced to gaseous nitrogen products. N2O gas was detected in the presence of VFAs which was a clear indication that VFAs stimulated an alternative pathway, such as aerobic denitrification, during biotransformation of nitrogen in activated sludge.  相似文献   

16.
通过控制泥龄实现亚硝酸盐型同步硝化反硝化   总被引:8,自引:0,他引:8  
采用序批式活性污泥法处理人工配制的城市生活污水,通过控制泥龄成功地实现了亚硝酸盐型同步硝化反硝化,曝气过程中NO2^-N/NOx^-N值始终保持在84.48%以上,曝气结束时大约有80.39%的氨氮通过同步硝化反硝化途径被去除。在适宜的曝气量下,利用排泥的方法控制反应器内适宜的泥龄,可以实现稳定的亚硝酸盐型同步硝化反硝化。  相似文献   

17.
Nitrous oxide (N2O) is an important greenhouse gas and a major sink for stratospheric ozone. In biological wastewater treatment, microbial processes such as autotrophic nitrification and heterotrophic denitrification have been identified as major sources; however, the underlying pathways remain unclear. In this study, the mechanisms of N2O production were investigated in a laboratory batch-scale system with activated sludge for treating municipal wastewater. This relatively complex mixed population system is well representative for full-scale activated sludge treatment under nitrifying and denitrifying conditions.Under aerobic conditions, the addition of nitrite resulted in strongly nitrite-dependent N2O production, mainly by nitrifier denitrification of ammonia-oxidizing bacteria (AOB). Furthermore, N2O is produced via hydroxylamine oxidation, as has been shown by the addition of hydroxylamine. In both sets of experiments, N2O production was highest at the beginning of the experiment, then decreased continuously and ceased when the substrate (nitrite, hydroxylamine) had been completely consumed. In ammonia oxidation experiments, N2O peaked at the beginning of the experiment when the nitrite concentration was lowest. This indicates that N2O production via hydroxylamine oxidation is favored at high ammonia and low nitrite concentrations, and in combination with a high metabolic activity of ammonia-oxidizing bacteria (at 2 to 3 mgO2/l); the contribution of nitrifier denitrification by AOB increased at higher nitrite and lower ammonia concentrations towards the end of the experiment.Under anoxic conditions, nitrate reducing experiments confirmed that N2O emission is low under optimal growth conditions for heterotrophic denitrifiers (e.g. no oxygen input and no limitation of readily biodegradable organic carbon). However, N2O and nitric oxide (NO) production rates increased significantly in the presence of nitrite or low dissolved oxygen concentrations.  相似文献   

18.
研究了分别填充堆肥和污泥的生物滤塔对含三甲胺气体的处理能力.结果表明,两种生物滤塔均能有效处理含三甲胺的气体,对三甲胺的去除率几乎达到了100%,三甲胺被生物降解并生成氨.堆肥生物滤塔各段填料中的硝态氮含量随时间的延长呈显著提高的趋势,但pH值出现下降,说明其中发生了氨的硝化作用.而在污泥生物滤塔中,随着氨的积累则各填料层的pH值迅速升高,并且没有观察到亚硝态氮以及硝态氮含量的增加,因此其不具备进一步降解氨的能力.  相似文献   

19.
Attempts were made for removing ammonia from synthetic wastewater under the presence of phenol, which is inhibitory to nitrification, by using a single-stage activated sludge process with cross-flow filtration. Activated sludge biomass which had been acclimated with phenol for over 15 years was used for the inoculum, and synthetic wastewater was continuously supplied to the process retaining biomass at 8000 mg VSS l(-1). Phenol was completely removed, and ammonia was simultaneously nitrified to nitrate; nitrification rate reached 200 mg N l(-1) d(-1) when phenol was removed at a rate up to 300 mg l(-1) d(-1). It was observed that 0-13% of the ammonia was removed via denitrification. Intermittent aeration enhanced the denitrification rate to 160 mg N l(-1) d(-1) by utilizing phenol. and approximately 24% of the denitrified nitrogen was recovered as nitrous oxide. Methanol, which is the most commonly used electron donor in conventional nitrogen removal processes, did not enhance the denitrification rate of the phenol-acclimated activated sludge used in this study, however phenol did. The results suggest that this process potentially works as a space- and energy-saving nitrogen removal process by utilizing substances inhibitory to nitrifiers as electron donors for denitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号