首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors examine the human immunodeficiency virus (HIV) eradication in this study using a mathematical model and analyse the occurrence of virus eradication during the early stage of infection. To this end they use a deterministic HIV‐infection model, modify it to describe the pharmacological dynamics of antiretroviral HIV drugs, and consider the clinical experimental results of preexposure prophylaxis HIV treatment. They also use numerical simulation to model the experimental scenario, thereby supporting the clinical results with a model‐based explanation. The study results indicate that the protocol employed in the experiment can eradicate HIV in infected patients at the early stage of the infection.Inspec keywords: diseases, numerical analysis, drugs, patient treatmentOther keywords: preexposure prophylaxis HIV treatment, antiretroviral HIV drug, pharmacological dynamics, deterministic HIV‐infection model, early infection stage, virus eradication, mathematical model, human immunodeficiency virus, HIV eradication  相似文献   

2.
An efficient green method of gold nanoparticles (AuNPs) biosynthesis was achieved by cell‐free extracts of fungus Trichoderma sp. WL‐Go. Based on UV–Vis spectra, AuNPs biosynthesised by cell‐free extracts with 90 mg/l protein exhibited a characteristic absorption band at 556 nm and was stable for 7 days. Transmission electron microscopy images revealed that the as‐synthesised AuNPs were spherical and pseudo‐spherical, and the average size was calculated to be 9.8 nm with a size range of 1–24 nm. The AuNPs illustrated their good catalytic activities for reduction of nitro‐aromatics (2‐nitrophenol, 3‐nitrophenol, 4‐nitrophenol, 2‐nitroaniline, 3‐nitroaniline) with catalytic rate constants of 7.4 × 10−3 s−1, 10.3 × 10−3 s−1, 4.9 × 10−3 s−1, 5.8 × 10−3 s−1, 15.0 × 10−3 s−1, respectively. Meanwhile, the AuNPs also showed excellent catalytic performance in decolourisation of azo dyes with decolourisation efficiency from 82.2 to 97.5%. This study provided a green gentle method for AuNPs synthesis as well as exhibiting efficient catalytic capability for degradation of aromatic pollutants.Inspec keywords: catalysts, dyes, particle size, reduction (chemical), nanobiotechnology, nanofabrication, ultraviolet spectra, gold, transmission electron microscopy, nanoparticles, proteins, catalysis, visible spectra, pollution control, microorganismsOther keywords: nitro‐aromatics, catalytic rate constants, decolourisation efficiency, green gentle method, efficient green method, gold nanoparticles biosynthesis, cell‐free extracts, UV–Vis spectra, characteristic absorption band, transmission electron microscopy images, as‐synthesised AuNPs, catalytic performance, protein, catalytic activities, efficient catalytic capability, fungus Trichoderma sp. WL‐Go, aromatic pollutants degradation, 2‐nitrophenol, 3‐nitrophenol, 4‐nitrophenol, 2‐nitroaniline, 3‐nitroaniline, azo dye decolourisation, Au  相似文献   

3.
In recent years, considerable attention has been given to the plant‐mediated synthesis of nanoparticles because it is an eco‐friendly method compared to the synthesis by chemical route. This study aims to optimise the biosynthesis of zinc oxide nanoparticles (ZnO‐NPs) mediated by coconut water using response surface methodology (RSM). The effects of the individual variables (concentration of coconut water, temperature and time) and their interactions during the biosynthesis of ZnO‐NPs were determined by RSM employing Box–Behnken design. The variables selected were tested by a 17‐run experiment and quadratic model was used for the analysis of the results. The accuracy of the model was confirmed by the coefficient of determination (R 2) value of 0.9968. The significance of the regression model was found to be high which is validated by the low probability value of P  < 0.0001. The ZnO‐NPs thus synthesised was evaluated for its antimacrofouling activity against mollusks using in‐vitro foot‐adherence bioassay. The results demonstrated the potential of biosynthesised ZnO‐NPs in inhibiting fouling induced due to the test organisms.Inspec keywords: nanoparticles, antibacterial activity, response surface methodology, zinc compounds, regression analysis, design of experiments, biotechnologyOther keywords: plant‐mediated synthesis, eco‐friendly method, biosynthesis, zinc oxide nanoparticles, coconut water, response surface methodology, RSM, Box–Behnken design, quadratic model, regression model, antimacrofouling activity, biosynthesised ZnO‐NPs, process optimisation, green synthesis, ZnO nanoparticles  相似文献   

4.
The surface stress‐based biosensor has been applied in fast and sensitive identification of Escherichia coli (E. coli)with significance for public health, food, and water safety. However, the stable sensitive element of flexible biosensor based on surface stress is still crucial and challengeable. Here, the authors reported surface stress‐induced biosensors based on double‐layer stable gold nanostructures (D‐AuNS‐SSMB) for E. coli O157:H7 detection. Bacterial detection demonstrates the high stability of the biosensor. The resistance change of biosensor is linear to the logarithmic value of the E. coli O157:H7 concentrations ranging from 103  to 107  CFU/mL with a limit of detection (LOD) of 43 CFU/mL. The captured signals of D‐AuNS‐SSMB comes from surface stress generated by antigen–antibody binding. In addition, the biosensor exhibits good stability, reproducibility and specificity in detection of E. coli O157:H7 as well. This study provides a new preparation method of stable sensitive element for the E. coli detection.Inspec keywords: microorganisms, biosensors, gold, membranes, stress measurement, nanostructured materials, nanosensorsOther keywords: double‐layer stable gold nanostructures, D‐AuNS‐SSMB, bacterial detection, surface stress‐induced membrane biosensor, escherichia coli detection, water safety, stability, E. coli O157:H7 concentration detection, antigen–antibody binding, Au  相似文献   

5.
6.
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease that may result in arrhythmia, heart failure and sudden death. The hallmark pathological findings are progressive myocyte loss and fibro fatty replacement, with a predilection for the right ventricle. This study focuses on the adipose tissue formation in cardiomyocyte by considering the signal transduction pathways including Wnt/ β ‐catenin and Wnt/Ca2+ regulation system. These pathways are modelled and analysed using stochastic petri nets (SPN) in order to increase our comprehension of ARVC and in turn its treatment regimen. The Wnt/ β ‐catenin model predicts that the dysregulation or absence of Wnt signalling, inhibition of dishevelled and elevation of glycogen synthase kinase 3 along with casein kinase I are key cytotoxic events resulting in apoptosis. Moreover, the Wnt/Ca2+ SPN model demonstrates that the Bcl2 gene inhibited by c‐Jun N‐terminal kinase protein in the event of endoplasmic reticulum stress due to action potential and increased amount of intracellular Ca2+ which recovers the Ca2+ homeostasis by phospholipase C, this event positively regulates the Bcl2 to suppress the mitochondrial apoptosis which causes ARVC.Inspec keywords: molecular biophysics, enzymes, cancer, muscle, Petri nets, cellular biophysics, bioelectric potentials, biomembranes, tumours, cardiology, genetics, biochemistry, calciumOther keywords: heart failure, sudden death, hallmark pathological findings, progressive myocyte loss, fibro fatty replacement, adipose tissue formation, signal transduction pathways, Ca2+ regulation system, stochastic petri nets, ARVC, $β‐catenin model, Wnt signalling, glycogen synthase kinase 3, Bcl2 gene, c‐Jun N‐terminal kinase protein, petri Net modelling approach, Ca2+ signalling pathways, arrhythmogenic right ventricular cardiomyopathy, inherited heart muscle disease, Ca2+ SPN model, Ca  相似文献   

7.
In this study, saponin capped triangular silver nanocrystals have been synthesised using fenugreek seed extract, where the extract acts both as a reducing and capping agent. X‐ray diffraction study confirms the purity and crystalline nature of the prepared nanocrystals and transmission electron microscopic study shows the triangular morphology with the average edge length of 72 nm, along with the atomic force microscopy study for the height or the width of the triangular nanocrystals. These nanocrystals have been investigated against a few pulses (seeds) such as Pisum sativum, Cicer arietinum and Vigna radiata for their effect on the germination as well as growth of root and shoot. Considering different concentration of silver nanocrystals solution, it has been found that 25 × 10−4 and 80 × 10−4 μg/ml are the minimum and maximum concentrations of silver nanocrystals, within this range, germination and subsequent growth of root and shoot are effective. The result shows significant positive influence on the growth of root and shoot of all seeds in comparison to those of unexposed control germination. Therefore, the result of this experiment has confirmed that the use of saponin capped silver nanocrystals enhances the germination and growth of plants.Inspec keywords: transmission electron microscopy, atomic force microscopy, nanofabrication, silver, nanostructured materials, X‐ray diffraction, crystal morphology, nanobiotechnology, botanyOther keywords: Pisum sativum, saponin capped nanocrystals, nanocrystals solution, atomic force microscopy, transmission electron microscopy, reducing agent, Vigna radiata seeds, Cicer arietinum, unexposed control germination, triangular nanocrystals, triangular morphology, x‐ray diffraction study, fenugreek seed  相似文献   

8.
The electrochemiluminescence (ECL) system based on the ruthenium complex has become a powerful tool in the field of analytical chemistry. However, the non‐aqueous ECL luminescence system, which does not involve complex nano‐modification, has not been widely used for the determination of analytes. In this study, N ‐methyl pyrrolidone was selected as the solvent, and it could also act as a co‐reactant of Rubpy32+. Based on this, a simple ECL system without nanomaterials was established. Strong ECL was generated. Furthermore, a quenching effect between the excited state of Rubpy32+ and sulphamethoxazole (SMZ) was observed. Based on this, a sensitive ECL sensor for detecting SMZ is constructed. A linear relationship between ECL signal quenching intensity (ΔI) and the logarithm of SMZ concentration (log C) in the concentration range of 1 × 10−7 –1 × 10−5 mol/l is obtained. The limit of detection is as low as 3.33 × 10−9 mol/l. The method has been applied to the detection of SMZ in tap water samples with different concentration levels with satisfactory results, and the recovery was 95.3–102.6%.Inspec keywords: biosensors, electrochemical sensors, electroluminescence, chemiluminescence, organic compounds, electrochemistryOther keywords: ruthenium complex, analytical chemistry, nonaqueous ECL luminescence system, complex nanomodification, quenching effect, ECL signal quenching intensity, ECL sensor system, nanofree electrochemiluminescence biosensor system, sulphamethoxazole detection, tris(2,2′‐bipyridyl)ruthenium(II), N‐methyl pyrrolidone recognition, analyte determination, nanomaterials, SMZ concentration detection  相似文献   

9.
In this work, the authors propose the Hilbert transform (HT)‐based numerical method to analyse the time series of the circadian rhythms. They demonstrate the application of HT by taking both deterministic and stochastic time series that they get from the simulation of the fruit fly model Drosophila melanogaster and show how to extract the period, construct phase response curves, determine period sensitivity of the parameters to perturbations and build Arnold tongues to identify the regions of entrainment. They also derive a phase model that they numerically simulate to capture whether the circadian time series entrains to the forcing period completely (phase locking) or only partially (phase slips) or neither. They validate the phase model, and numerics with the experimental time series forced under different temperature cycles. Application of HT to the circadian time series appears to be a promising tool to extract the characteristic information about circadian rhythms.Inspec keywords: time series, genetics, Hilbert transforms, stochastic processes, circadian rhythms, signal processing, medical signal processingOther keywords: phase model, experimental time series, circadian time series, circadian rhythms, circadian gene regulatory network, deterministic time series, stochastic time series, fruit fly model, phase response curves, period sensitivity, phase locking, phase slips, Hilbert transform, time‐series analysis, signal processing  相似文献   

10.
Stroke is the third major cause of mortality in the world. The diagnosis of stroke is a very complex issue considering controllable and uncontrollable factors. These factors include age, sex, blood pressure, diabetes, obesity, heart disease, smoking, and so on, having a considerable influence on the diagnosis of stroke. Hence, designing an intelligent system leading to immediate and effective treatment is essential. In this study, the soft computing method known as fuzzy cognitive mapping was proposed for diagnosis of the risk of ischemic stroke. Non‐linear Hebbian learning method was used for fuzzy cognitive maps training. In the proposed method, the risk rate for each person was determined based on the opinions of the neurologists. The accuracy of the proposed model was tested using 10‐fold cross‐validation, for 110 real cases, and the results were compared with those of support vector machine and K ‐nearest neighbours. The proposed system showed a superior performance with a total accuracy of (93.6 ± 4.5)%. The data used in this study is available by emailing the first author for academic and non‐commercial purposes.Inspec keywords: patient diagnosis, fuzzy logic, diseases, medical computing, cognition, learning (artificial intelligence), fuzzy set theory, Hebbian learning, neural nets, support vector machinesOther keywords: ischemic stroke, controllable factors, uncontrollable factors, blood pressure, heart disease, intelligent system, immediate treatment, soft computing method, fuzzy cognitive mapping, nonlinear Hebbian learning method, fuzzy cognitive maps training, risk rate  相似文献   

11.
Mast cell (MC) degranulation is an important step in the healing process. In this study, silver‐nanoparticles‐based surface‐enhanced Raman spectroscopy (SERS) was used to investigate the spectral characteristics of degranulation of MCs activated by low‐intensity laser. The significant spectral changes, such as Raman peak intensities, suggested the concentration variation of some degranulated substances. The Raman intensity ratio of 799–554 cm 1 could be used as a potential internal indicator for the degranulation degree of MCs. Principal component analysis (PCA) was employed to reduce the high dimension of spectra into a few principal components (PCs) while retaining the most diagnostically significant information for sample differentiation. Using the diagnostically significant PC scores (P  < 0.05), linear discriminate analysis (LDA) was applied to identify different cell degranulation groups with high sensitivity, specificity and accuracy. This exploratory work demonstrates that SERS technique combined with a PCA‐LDA algorithm possesses great potential for developing a label‐free, comprehensive, non‐invasive and accurate method for measuring MC degranulation.Inspec keywords: Raman spectra, silver, surface enhanced Raman scattering, Raman spectroscopy, nanoparticles, cellular biophysics, biological techniques, principal component analysisOther keywords: MCs, principal component analysis, diagnostically significant information, diagnostically significant PC scores, linear discriminate analysis, different cell degranulation groups, PCA‐LDA algorithm possesses great potential, MC degranulation, surface‐enhanced Raman spectroscopy analysis, mast cell degranulation, low‐intensity laser, healing process, silver‐nanoparticles‐based surface‐enhanced Raman spectroscopy, significant spectral changes, Raman peak intensities, concentration variation, degranulated substances, Raman intensity ratio, potential internal indicator, degranulation degree  相似文献   

12.
Electroporation facilitates loading of cells with molecules and substances that are normally membrane impermeable. Flow cytometry is used in this study to examine the effects of the application of electroporation‐level monopolar electric field pulses of varying electrical field strength on Ishikawa endometrial adenocarcinoma cells. Analysis of the fluorescence versus forward scatter plots corroborates the well‐recognised threshold and cell size dependence characteristics of electroporation, but also shows the progression of cell lysis and generation of particulate material. Two 500 µs monopolar rectangular pulses ranging from 1.0 × 105 to 2.5 × 105 V/m were used to electroporate the cells. Electroporation yields (fraction of viable cells exhibiting significant propidium iodide uptake) ranged from 0 to 97%, with viability ranging between 78 and 34% over the electric field strength range tested. The higher electric field strength pulses not only reduced cell viability, but also generated a substantial amount of sub‐cellular sized particulate material indicating cells have been physically disrupted enough to create these particles.Inspec keywords: biomembranes, fluorescence, bioelectric phenomena, cancer, cellular effects of radiationOther keywords: sub‐cellular sized particulate material, electric field strength pulses, monopolar rectangular pulses, electric field strength, propidium iodide uptake, electroporation, cell lysis, cell size dependence characteristics, Ishikawa endometrial adenocarcinoma cells, electrical field strength, electroporation‐level monopolar electric field pulses, flow cytometry, cell viability  相似文献   

13.
Here, a rapid and easy transformation by electroporation technique for gene transfer in plants using cell penetrating amino nanocomplex (nanoplex) has been demonstrated in Nicotiana. Nanoplex was prepared using cell penetrating amino acids (CPAs) such as poly‐L‐lysine (PLL) and Argenine (Arg), in combination with the gold nanoparticles (AuNPs). PLLs‐modified nanoplex with zeta potential of 34.2 ± 1.22 mV charge showed 63.3% efficiency for gene transformation in plant cells as compared to 60% when modified with Arg and the zeta potential was found to be 30.0 ± 0.83 mV; whereas, the transformation efficiency without nanoplex was found to be 6.6%. The findings indicate that the zeta potential of positively charged nanocomplex (AuNPs/CPAs/DNA/CPAs) increases the transformation efficiency because of their ability to protect the DNA from electroporation wave and endogenous enzyme damage. Transformation was confirmed by GUS assay and amplification of npt gene. This technique may open up new possibilities of gene transfer in plants, which will enable to produce large number of transgenic plants.Inspec keywords: biochemistry, electrokinetic effects, DNA, biomedical materials, nanomedicine, nanoparticles, gold, cellular biophysics, enzymes, genetics, molecular biophysics, genomicsOther keywords: nanoplex‐mediated plant transformation approach, electroporation technique, gene transfer, cell penetrating amino nanocomplex, cell penetrating amino acids, poly‐L‐lysine, Arg, gold nanoparticles, PLLs‐modified nanoplex, zeta potential, gene transformation, plant cells, transformation efficiency, positively charged nanocomplex, electroporation wave, npt gene, transgenic plants, AuNPs‐CPAs‐DNA‐CPAs, voltage 32.980000000000004 mV to 35.42 mV, voltage 29.169999999999998 mV to 30.830000000000002 mV, Au  相似文献   

14.
15.
The stress conditions imposed by the impact of metal and non‐metal oxide nanoparticles over plant systems enhances the synthesis of reactive oxygen species (ROS), resulting in oxidative damage at cellular level. The objective of this study was to synthesise the gold nanoparticles (GNps) from the leaves protein of Nicotiana tabacum L. cv. xanthi, its characterisation, and response on plant physiology and ROS scavenging activity on plants after exposure to different stresses. The authors have treated N. tabacum L. cv. xanthi plants with 100, 200, 300, 400, and 500 ppm biochemically synthesised GNps and examined physiological as well as biochemical changes. Results showed that biochemically synthesised GNps exposure significantly increased the seed germination (P  < 0.001), root (P  < 0.001), shoot growth (P  < 0.001), and antioxidant ability (P  < 0.05) of plants depending on bioengineered GNPs concentrations. Low concentrations (200–300 ppm) of GNps boosted growth by ∼50% and significantly increase in photosynthetic parameters such as total chlorophyll content (P  < 0.05), membrane ion leakage (P  < 0.05) as well as malondialdehyde (P  < 0.05) content with respect to untreated plants under stress conditions. The high concentration (400–500 ppm) of GNps affected these parameters in a negative manner. The total antioxidant activity was also elevated in the exposed plants in a dose‐dependent manner.Inspec keywords: toxicology, nanoparticles, membranes, biotechnology, oxidation, proteins, tobacco industryOther keywords: biochemical synthesis, gold nanoparticles, leaf protein, tobacco plant, stress conditions, nonmetal oxide nanoparticles, reactive oxygen species, oxidative damage, leaves protein, plant physiology, ROS scavenging activity, xanthi plants, biochemical changes, nicotiana tabacum L. cv. xanthi  相似文献   

16.
17.
Hence, in this study, the authors aimed to develop a dendrimer‐based imaging agent comprised of poly(ethylene glycol) (PEG)‐citrate, technetium‐99 m (99m Tc), and folic acid. The dendrimer‐G3 was synthesised and conjugated with folic acid, which confirmed by Fourier transform infrared, proton nuclear magnetic resonance, dynamic light scattering, and transition electron microscopy. 2,3‐bis‐(2‐methoxy‐4‐nitro‐5‐sulfophenyl)‐2H‐Tetrazolium‐5‐Carboxanilide cytotoxicity assay kit was used to measure the cellular toxicity of dendrimer. Imaging and biodistribution studies were conducted on the mice bearing tumour. The results showed that the fabricated dendrimer‐G3 has a size of 90 ± 3 nm, which was increased to 100 ± 4 nm following the conjugation with folic acid. The radiostablity investigation showed that the fabricated dendrimers were stable in the human serum at various times. Toxicity assessment confirmed no cellular toxicity against HEK‐293 cells at 0.25, 0.5, 1, 2, 4, and 8 mg/μl concentrations. The in vivo studies demonstrated that the synthesised dendrimers were able to provide a bright SPECT image applicable for tumour detection. In conclusion, the authors’ study documented the positive aspects of PEG‐citrate dendrimer conjugated with folic acid as the SPECT contrast agent for breast cancer detection.Inspec keywords: toxicology, single photon emission computed tomography, technetium, cancer, bone, polymers, biochemistry, tumours, electrospinning, biomedical materials, light scattering, cellular biophysics, Fourier transform infrared spectra, proton magnetic resonance, transmission electron microscopy, biological organsOther keywords: biodistribution, toxicity assessment, cellular toxicity, bright SPECT image, PEG‐citrate dendrimer, breast cancer molecular imaging agent, proton nuclear magnetic resonance, dendrimer‐based imaging agent, folic acid‐conjugated G‐399m Tc‐dendrimer, dendrimer‐G3, poly(ethylene glycol)‐citrate, Fourier transform infrared spectra, dynamic light scattering, transition electron microscopy, 2,3‐bis‐(2‐methoxy‐4‐nitro‐5‐sulfophenyl)‐2H‐tetrazolium‐5‐carboxanilide cytotoxicity assay, human serum, tumour detection  相似文献   

18.
Drug encapsulation in nanocarriers such as polymeric nanoparticles (Nps) may help to overcome the limitations associated with cannabinoids. In this study, the authors’ work aimed to highlight the use of electrospraying techniques for the development of carrier Nps of anandamide (AEA), an endocannabinoid with attractive pharmacological effects but underestimated due to its unfavourable physicochemical and pharmacokinetic properties added to its undesirable effects at the level of the central nervous system. The authors characterised physicochemically and evaluated in vitro biological activity of anandamide/ɛ‐polycaprolactone nanoparticles (Nps‐AEA/PCL) obtained by electrospraying in epithelial cells of the human proximal tubule (HK2), to prove the utility of this method and to validate the biological effect of Nps‐AEA/PCL. They obtained particles from 100 to 900 nm of diameter with a predominance of 200–400 nm. Their zeta potential was −20 ± 1.86 mV. They demonstrated the stable encapsulation of AEA in Nps‐AEA/PCL, as well as its dose‐dependent capacity to induce the expression of iNOS and NO levels and to decrease the Na+ /K+ ATPase activity in HK2 cells. Obtaining Nps‐AEA/PCL by electrospraying would represent a promising methodology for a novel AEA pharmaceutical formulation development with optimal physicochemical properties, physical stability and biological activity on HK2 cells.Inspec keywords: cellular biophysics, molecular biophysics, nanoparticles, nanofabrication, biochemistry, encapsulation, drugs, neurophysiology, electrokinetic effects, enzymes, biomedical materials, nanomedicine, polymers, sprayingOther keywords: electrospraying techniques, pharmacological effects, pharmacokinetic properties, in vitro biological activity, biological effect, HK2 cells, optimal physicochemical properties, polymeric nanoparticles, AEA pharmaceutical formulation development, anandamide‐ε‐polycaprolactone nanoparticles, drug encapsulation, nanocarriers, endocannabinoid, central nervous system, epithelial cells, human proximal tubule, zeta potential, stable encapsulation, dose‐dependent capacity, Na+ ‐K+ ATPase activity, physical stability, size 100.0 nm to 900.0 nm, NO, Na+ ‐K+   相似文献   

19.
This study focused on synthesising nano‐scale zero valent iron (NZVI) impregnated on a low‐cost agro‐waste material, rubber seed shell (RSS), by borohydride reduction method. The characterisation studies of NZVI‐RSS were performed by Fourier transform infrared spectroscopy, scanning electron microscopy and X‐ray diffraction. The adsorption execution of NZVI‐RSS for Cu(II) ions evacuation from synthetic wastewater was explored by batch studies. The optimum condition for the present adsorption system is as follows: Cu(II) ion concentration = 25 mg/l; solution pH = 6.0; contact time = 30 min; NZVI‐RSS dose = 3 g/l; temperature = 30°C. The sorption data were best portrayed by pseudo‐first‐order and Freundlich models. The outcomes demonstrated the multilayer sorption of Cu(II) ions by NZVI‐RSS. The Langmuir capacity was observed as 48.18 mg/g. Thermodynamic parameters, ΔG °, ΔH ° and ΔS ° were ascertained, and it was watched that the adsorption system was unconstrained and exothermic. The sticking probability for Cu(II) ions by NZVI‐RSS was found to be high at lower temperature. At long last, the research inquire about reasoned that NZVI‐RSS has demonstrated unrivalled adsorption capacity. Also NZVI‐RSS is thought to be really green and financially amicable support for wastewater treatment.Inspec keywords: adsorption, copper, X‐ray diffraction, scanning electron microscopy, wastewater treatment, Fourier transform infrared spectroscopyOther keywords: nano‐scale zero valent iron, rubber seed shell, copper ions, borohydride reduction method, NZVI‐RSS, Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, adsorption execution, synthetic wastewater, Langmuir capacity, Freundlich models, adsorption system, wastewater treatment, adsorption capacity, Cu  相似文献   

20.
The objective of this study was to develop an in‐situ gel containing lorazepam (LZM) loaded nanostructured lipid carriers (NLCs) for direct nose‐to‐brain delivery in order to increase drug therapeutic efficacy in the treatment of epilepsy. Accordingly, LZM loaded NLCs were formulated using emulsification solvent diffusion and evaporation method; then the effects of the formulation variables on different physicochemical characteristics of NLCs were investigated. Thermosensitive in‐situ gels containing LZM‐NLCs were prepared using a combination of chitosan and β‐glycerol phosphate (β‐GP). The anticonvulsant efficacy of LZM‐NLCs‐Gel was then examined using the pentylenetetrazole (PTZ) model. The optimised NLCs were spherical, showing the particle size of 71.70 ± 5.16 nm and the zeta potential of −20.06 ± 2.70 mV. The pH and gelation time for the chitosan solution with 15% (w/v) β‐GP were determined to be 7.12 ± 0.03 and 5.33 ± 0.58 min, respectively. The in‐vivo findings showed that compared with the control group and the group that received LZM‐Gel, the occurrence of PTZ‐induced seizures in the rats was significantly reduced by LZM‐NLCs‐Gel after intranasal administration. These results, therefore, suggested that the LZM‐NLCs‐Gel system could have potential applications for brain targeting through nasal route and might increase LZM therapeutic efficacy in the treatment of epilepsy.Inspec keywords: biomedical materials, nanomedicine, cellular biophysics, electrokinetic effects, drug delivery systems, nanoparticles, brain, pH, drugs, particle size, nanofabrication, medical disorders, polymer gelsOther keywords: evaporation method, β‐glycerol phosphate, β‐GP, optimised NLCs, received LZM‐Gel, LZM therapeutic efficacy, chitosan‐based thermosensitive gel, lorazepam NLCs, nose‐to‐brain delivery, drug therapeutic efficacy, emulsification solvent diffusion, in‐vivo evaluation, in‐vitro evaluation, LZM‐NLC‐gel system, status epilepticus treatment, lorazepam loaded nanostructured lipid carriers, epilepsy treatment, physicochemical characteristics, thermosensitive in‐situ gel, anticonvulsant efficacy, pentylenetetrazole model, particle size, zeta potential, pH, gelation time, chitosan solution, PTZ‐induced seizures, intranasal administration  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号