首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacterial ATP binding cassette (ABC) transporters mediate the influx of numerous substrates. The cluster A-I ABC transporters are responsible for the specific uptake of the essential metals zinc, manganese or iron, making them necessary for survival in metal-limited environments, which for pathogens include the animal host. In Paracoccus denitrificans, there are two zinc ABC transporter systems: ZnuABC and AztABCD with apparently redundant functions under zinc-limited conditions. The unusual presence of two zinc ABC transporter systems in the same organism allowed for the investigation of specificity in the interaction between the solute binding protein (SBP) and its cognate permease. We also assessed the role of flexible loop features in the SBP in permease binding and zinc transport. The results indicate that the SBP–permease interaction is highly specific and does not require the flexible loop features of the SBP. We also present an expanded table of the properties of characterized cluster A-I SBPs and a multiple sequence alignment highlighting the conserved features. Through this analysis, an apparently new family of binding proteins associated with ABC transporters was identified. The presence of homologues in several human pathogens raises the possibility of using it as a target for the development of new antimicrobial therapies.  相似文献   

2.
ABC transporters are expressed in skin cells to protect them against harmful xenobiotics. Moreover, these transmembrane proteins have a number of additional functions that ensure skin homeostasis. This review summarizes the current knowledge about the role of specific ABC proteins in the skin, including multi-drug resistance transporters (MDR1/3), the transporter associated with antigen processing 1/2 (TAP1/2), the cystic fibrosis transmembrane conductance regulator (CFTR), sulfonylurea receptors (SUR1/2), and the breast cancer resistance protein (BCRP). Additionally, the effect of UV radiation on ABC transporters is shown. The exposure of skin cells to UV radiation often leads to increased activity of ABC transporters—as has been observed in the case of MDRs, TAPs, CFTR, and BCRP. A different effect of oxidative stress has been observed in the case of mitochondrial SURs. However, the limited data in the literature—as indicated in this article—highlights the limited number of experimental studies dealing with the role of ABC transporters in the physiology and pathophysiology of skin cells and the skin as a whole. At the same time, the importance of such knowledge in relation to the possibility of daily exposure to UV radiation and xenobiotics, used for both skin care and the treatment of its diseases, is emphasized.  相似文献   

3.
ATP-binding cassette (ABC) transporters represent a heterogeneous group of ATP-dependent transport proteins, which facilitate the import and/or export of various substrates, including lipids, sugars, amino acids and peptides, ions, and drugs. ABC transporters are involved in a variety of physiological processes in different human tissues. More recent studies have demonstrated that ABC transporters also regulate the development and function of different T cell populations, such as thymocytes, Natural Killer T cells, CD8+ T cells, and CD4+ T helper cells, including regulatory T cells. Here, we review the current knowledge on ABC transporters in these T cell populations by summarizing how ABC transporters regulate the function of the individual cell types and how this affects the immunity to viruses and tumors, and the course of autoimmune diseases. Furthermore, we provide a perspective on how a better understanding of the function of ABC transporters in T cells might provide promising novel avenues for the therapy of autoimmunity and to improve immunity to infection and cancer.  相似文献   

4.
5.
Chemotherapeutics are the mainstay treatment for metastatic breast cancers. However, the chemotherapeutic failure caused by multidrug resistance (MDR) remains a pivotal obstacle to effective chemotherapies of breast cancer. Although in vitro evidence suggests that the overexpression of ATP-Binding Cassette (ABC) transporters confers resistance to cytotoxic and molecularly targeted chemotherapies by reducing the intracellular accumulation of active moieties, the clinical trials that target ABCB1 to reverse drug resistance have been disappointing. Nevertheless, studies indicate that ABC transporters may contribute to breast cancer development and metastasis independent of their efflux function. A broader and more clarified understanding of the functions and roles of ABC transporters in breast cancer biology will potentially contribute to stratifying patients for precision regimens and promote the development of novel therapies. Herein, we summarise the current knowledge relating to the mechanisms, functions and regulations of ABC transporters, with a focus on the roles of ABC transporters in breast cancer chemoresistance, progression and metastasis.  相似文献   

6.
In this review we reported and discussed the structural features of the ATP-Binding Cassette (ABC) transporter ABCA3 and how the use of bioinformatics tools could help researchers to obtain a reliable structural model of this important transporter. In fact, a model of ABCA3 is still lacking and no crystallographic structures (of the transporter or of its orthologues) are available. With the advent of next generation sequencing, many disease-causing mutations have been discovered and many more will be found in the future. In the last few years, ABCA3 mutations have been reported to have important pediatric implications. Thus, clinicians need a reliable structure to locate relevant mutations of this transporter and make genotype/phenotype correlations of patients affected by ABCA3-related diseases. In conclusion, we strongly believe that the model preliminarily generated by these novel bioinformatics tools could be the starting point to obtain more refined models of the ABCA3 transporter.  相似文献   

7.
Adrenoleukodystrophy (X-ALD) is an X-linked genetic disorder caused by mutation of the ATP-binding cassette subfamily D member 1 gene, which encodes the peroxisomal membrane protein, adrenoleukodystrophy protein (ALDP). ALDP is associated with the transport of very-long-chain fatty acids (VLCFAs; carbon chain length ≥ 24) into peroxisomes. Defective ALDP leads to the accumulation of saturated VLCFAs in plasma and tissues, which results in damage to myelin and the adrenal glands. Here, we profiled the glycosphingolipid (GSL) species in fibroblasts from X-ALD patients. Quantitative analysis was performed using liquid chromatography–electrospray ionization–tandem mass spectrometry with a chiral column in multiple reaction monitoring (MRM) mode. MRM transitions were designed to scan for precursor ions of long-chain bases to detect GSLs, neutral loss of hexose to detect hexosylceramide (HexCer), and precursor ions of phosphorylcholine to detect sphingomyelin (SM). Our results reveal that levels of C25 and C26-containing HexCer, Hex2Cer, NeuAc-Hex2Cer, NeuAc-HexNAc-Hex2Cer, Hex3Cer, HexNAc-Hex3Cer, and SM were elevated in fibroblasts from X-ALD patients. In conclusion, we precisely quantified SM and various GSLs in fibroblasts from X-ALD patients and determined structural information of the elevated VLCFA-containing GSLs.  相似文献   

8.
ATP-binding cassette (ABC) transporter proteins are a gene super-family in plants and play vital roles in growth, development, and response to abiotic and biotic stresses. The ABC transporters have been identified in crop plants such as rice and buckwheat, but little is known about them in soybean. Soybean is an important oil crop and is one of the five major crops in the world. In this study, 255 ABC genes that putatively encode ABC transporters were identified from soybean through bioinformatics and then categorized into eight subfamilies, including 7 ABCAs, 52 ABCBs, 48 ABCCs, 5 ABCDs, 1 ABCEs, 10 ABCFs, 111 ABCGs, and 21 ABCIs. Their phylogenetic relationships, gene structure, and gene expression profiles were characterized. Segmental duplication was the main reason for the expansion of the GmABC genes. Ka/Ks analysis suggested that intense purifying selection was accompanied by the evolution of GmABC genes. The genome-wide collinearity of soybean with other species showed that GmABCs were relatively conserved and that collinear ABCs between species may have originated from the same ancestor. Gene expression analysis of GmABCs revealed the distinct expression pattern in different tissues and diverse developmental stages. The candidate genes GmABCB23, GmABCB25, GmABCB48, GmABCB52, GmABCI1, GmABCI5, and GmABCI13 were responsive to Al toxicity. This work on the GmABC gene family provides useful information for future studies on ABC transporters in soybean and potential targets for the cultivation of new germplasm resources of aluminum-tolerant soybean.  相似文献   

9.
10.
Breast cancer is the most common cancer in women in the world. The role of germline genetic variability in ATP-binding cassette (ABC) transporters in cancer chemoresistance and prognosis still needs to be elucidated. We used next-generation sequencing to assess associations of germline variants in coding and regulatory sequences of all human ABC genes with response of the patients to the neoadjuvant cytotoxic chemotherapy and disease-free survival (n = 105). A total of 43 prioritized variants associating with response or survival in the above testing phase were then analyzed by allelic discrimination in the large validation set (n = 802). Variants in ABCA4, ABCA9, ABCA12, ABCB5, ABCC5, ABCC8, ABCC11, and ABCD4 associated with response and variants in ABCA7, ABCA13, ABCC4, and ABCG8 with survival of the patients. No association passed a false discovery rate test, however, the rs17822931 (Gly180Arg) in ABCC11, associating with response, and the synonymous rs17548783 in ABCA13 (survival) have a strong support in the literature and are, thus, interesting for further research. Although replicated associations have not reached robust statistical significance, the role of ABC transporters in breast cancer should not be ruled out. Future research and careful validation of findings will be essential for assessment of genetic variation which was not in the focus of this study, e.g., non-coding sequences, copy numbers, and structural variations together with somatic mutations.  相似文献   

11.
Fatty acids (FAs) have numerous functions in all living organisms, ranging from structural roles and energy production to the biosynthesis of secondary metabolites. Because of the high energy content of exogenous FAs, their acquisition is central of metabolism, and several biological systems are known, although their precise roles are not yet entirely clear. We investigated the roles of FadD (CoA ligase) and FadL (FA transporter) in different bacterial strains by using an improved version of click‐chemistry‐assisted labelling of azido‐FAs. The high sensitivity of this method allows a direct and precise assessment of FA metabolism, and is thus far better suited than growth experiments. Our results show that although FA activation is indeed essential for FA degradation, their transport can be independent of transporters like FadL.  相似文献   

12.
Lung carcinoma is still the most common malignancy worldwide. One of the major subtypes of non-small cell lung cancer (NSCLC) is adenocarcinoma (AC). As driver mutations and hence therapies differ in AC subtypes, we theorized that the expression and function of ABC drug transporters important in multidrug resistance (MDR) would correlate with characteristic driver mutations KRAS or EGFR. Cisplatin resistance (CR) was generated in A549 (KRAS) and PC9 (EGFR) cell lines and gene expression was tested. In three-dimensional (3D) multicellular aggregate cultures, both ABCB1 and ABCG2 transporters, as well as the WNT microenvironment, were investigated. ABCB1 and ABCG2 gene expression levels were different in primary AC samples and correlated with specific driver mutations. The drug transporter expression pattern of parental A549 and PC9, as well as A549-CR and PC9-CR, cell lines differed. Increased mRNA levels of ABCB1 and ABCG2 were detected in A549-CR cells, compared to parental A549, while the trend observed in the case of PC9 cells was different. Dominant alterations were observed in LEF1, RHOU and DACT1 genes of the WNT signalling pathway in a mutation-dependent manner. The study confirmed that, in lung AC-s, KRAS and EGFR driver mutations differentially affect both drug transporter expression and the cisplatin-induced WNT signalling microenvironment.  相似文献   

13.
14.
15.
The ATP-binding cassette (ABC) transporters expressed at the canalicular membrane of hepatocytes mediate the secretion of several compounds into the bile canaliculi and therefore play a key role in bile secretion. Among these transporters, ABCB11 secretes bile acids, ABCB4 translocates phosphatidylcholine and ABCG5/G8 is responsible for cholesterol secretion, while ABCB1 and ABCC2 transport a variety of drugs and other compounds. The dysfunction of these transporters leads to severe, rare, evolutionary biliary diseases. The development of new therapies for patients with these diseases requires a deep understanding of the biology of these transporters. In this review, we report the current knowledge regarding the regulation of canalicular ABC transporters’ folding, trafficking, membrane stability and function, and we highlight the role of molecular partners in these regulating mechanisms.  相似文献   

16.
Human monoamine transporters (MATs) are cation transporters critically involved in neuronal signal transmission. While inhibitors of MATs have been intensively studied, their substrate spectra have received far less attention. Polyspecific organic cation transporters (OCTs), predominantly known for their role in hepatic and renal drug elimination, are also expressed in the central nervous system and might modulate monoaminergic signaling. Using HEK293 cells overexpressing MATs or OCTs, we compared uptake of 48 compounds, mainly phenethylamine and tryptamine derivatives including matched molecular pairs, across noradrenaline, dopamine and serotonin transporters and OCTs (1, 2, and 3). Generally, MATs showed surprisingly high transport activities for numerous analogs of neurotransmitters, but their substrate spectra were limited by molar mass. Human OCT2 showed the broadest substrate spectrum, and also the highest overlap with MATs substrates. Comparative kinetic analyses revealed that the radiotracer meta-iodobenzylguanidine had the most balanced uptake across all six transporters. Matched molecular pair analyses comparing MAT and OCT uptake using the same methodology could provide a better understanding of structural determinants for high cell uptake by MATs or OCTs. The data may result in a better understanding of pharmacokinetics and toxicokinetics of small molecular organic cations and, possibly, in the development of more specific radiotracers for MATs.  相似文献   

17.
Ten percent of human genes encode for membrane transport systems, which are key components in maintaining cell homeostasis. They are involved in the transport of nutrients, catabolites, vitamins, and ions, allowing the absorption and distribution of these compounds to the various body regions. In addition, roughly 60% of FDA-approved drugs interact with membrane proteins, among which are transporters, often responsible for pharmacokinetics and side effects. Defects of membrane transport systems can cause diseases; however, knowledge of the structure/function relationships of transporters is still limited. Among the expression of hosts that produce human membrane transport systems, E. coli is one of the most favorable for its low cultivation costs, fast growth, handiness, and extensive knowledge of its genetics and molecular mechanisms. However, the expression in E. coli of human membrane proteins is often toxic due to the hydrophobicity of these proteins and the diversity in structure with respect to their bacterial counterparts. Moreover, differences in codon usage between humans and bacteria hamper translation. This review summarizes the many strategies exploited to achieve the expression of human transport systems in bacteria, providing a guide to help people who want to deal with this topic.  相似文献   

18.
The number of unique transmembrane (TM) protein structures doubled in the last four years, which can be attributed to the revolution of cryo-electron microscopy. In addition, AlphaFold2 (AF2) also provided a large number of predicted structures with high quality. However, if a specific protein family is the subject of a study, collecting the structures of the family members is highly challenging in spite of existing general and protein domain-specific databases. Here, we demonstrate this and assess the applicability and usability of automatic collection and presentation of protein structures via the ABC protein superfamily. Our pipeline identifies and classifies transmembrane ABC protein structures using the PFAM search and also aims to determine their conformational states based on special geometric measures, conftors. Since the AlphaFold database contains structure predictions only for single polypeptide chains, we performed AF2-Multimer predictions for human ABC half transporters functioning as dimers. Our AF2 predictions warn of possibly ambiguous interpretation of some biochemical data regarding interaction partners and call for further experiments and experimental structure determination. We made our predicted ABC protein structures available through a web application, and we joined the 3D-Beacons Network to reach the broader scientific community through platforms such as PDBe-KB.  相似文献   

19.
The kidney plays an important role in glucose homeostasis by releasing glucose into the blood stream to prevent hypoglycemia. It is also responsible for the filtration and subsequent reabsorption or excretion of glucose. As glucose is hydrophilic and soluble in water, it is unable to pass through the lipid bilayer on its own; therefore, transport takes place using carrier proteins localized to the plasma membrane. Both sodium-independent glucose transporters (GLUT proteins) and sodium-dependent glucose transporters (SGLT proteins) are expressed in kidney tissue, and mutations of the genes coding for these glucose transporters lead to renal disorders and diseases, including renal cancers. In addition, several diseases may disturb the expression and/or function of renal glucose transporters. The aim of this review is to describe the role of the kidney in glucose homeostasis and the contribution of glucose transporters in renal physiology and renal diseases.  相似文献   

20.
Potassium is basic for life. All living organisms require high amounts of intracellular potassium, which fulfils multiple functions. To reach efficient potassium homeostasis, eukaryotic cells have developed a complex and tightly regulated system of transporters present both in the plasma membrane and in the membranes of internal organelles that allow correct intracellular potassium content and distribution. We review the information available on the pathogenic yeast Candida albicans. While some of the plasma membrane potassium transporters are relatively well known and experimental data about their nature, function or regulation have been published, in the case of most of the transporters present in intracellular membranes, their existence and even function have just been deduced because of their homology with those present in other yeasts, such as Saccharomyces cerevisiae. Finally, we analyse the possible links between pathogenicity and potassium homeostasis. We comment on the possibility of using some of these transporters as tentative targets in the search for new antifungal drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号