首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Glioblastoma multiforme (GBM) is the most common and aggressive type of primary brain tumor in adults. Patients with this disease have a poor prognosis. The objective of this study is to identify survival‐related individual genes (or miRNAs) and miRNA ‐mRNA pairs in GBM using a multi‐step approach. First, the weighted gene co‐expression network analysis and survival analysis are applied to identify survival‐related modules from mRNA and miRNA expression profiles, respectively. Subsequently, the role of individual genes (or miRNAs) within these modules in GBM prognosis are highlighted using survival analysis. Finally, the integration analysis of miRNA and mRNA expression as well as miRNA target prediction is used to identify survival‐related miRNA ‐mRNA regulatory network. In this study, five genes and two miRNA modules that significantly correlated to patient''s survival. In addition, many individual genes (or miRNAs) assigned to these modules were found to be closely linked with survival. For instance, increased expression of neuropilin‐1 gene (a member of module turquoise) indicated poor prognosis for patients and a group of miRNA ‐mRNA regulatory networks that comprised 38 survival‐related miRNA ‐mRNA pairs. These findings provide a new insight into the underlying molecular regulatory mechanisms of GBM.Inspec keywords: RNA, molecular biophysics, genetics, cancerOther keywords: signature regulatory network, glioblastoma prognosis, mRNA coexpression analysis, miRNA coexpression analysis, glioblastoma multiforme, brain tumour, microRNAs, pathogenesis, genome‐wide regulatory networks, miRNA‐mRNA pairs, weighted gene coexpression network analysis, survival analysis, GBM prognosis, integration analysis, neuropilin‐1 gene, module turquoise, molecular regulatory mechanisms  相似文献   

6.
7.
Signalling pathway analysis is a popular approach that is used to identify significant cancer‐related pathways based on differentially expressed genes (DEGs) from biological experiments. The main advantage of signalling pathway analysis lies in the fact that it assesses both the number of DEGs and the propagation of signal perturbation in signalling pathways. However, this method simplifies the interactions between genes by categorising them only as activation (+1) and suppression (−1), which does not encompass the range of interactions in real pathways, where interaction strength between genes may vary. In this study, the authors used newly developed signalling pathway impact analysis (SPIA) methods, SPIA based on Pearson correlation coefficient (PSPIA), and mutual information (MSPIA), to measure the interaction strength between pairs of genes. In analyses of a colorectal cancer dataset, a lung cancer dataset, and a pancreatic cancer dataset, PSPIA and MSPIA identified more candidate cancer‐related pathways than were identified by SPIA. Generally, MSPIA performed better than PSPIA.Inspec keywords: genetics, cancer, biology computing, perturbation theory, biological organs, data analysisOther keywords: gene interaction strength, cancer‐related pathways, differentially expressed genes, biological experiments, signal perturbation propagation, signalling pathway impact analysis methods, Pearson correlation coefficient, mutual information, colorectal cancer dataset analysis, pancreatic cancer dataset, PSPIA, MSPIA  相似文献   

8.
Lung cancer is a leading cause of cancer‐related death worldwide. The early diagnosis of cancer has demonstrated to be greatly helpful for curing the disease effectively. Microarray technology provides a promising approach of exploiting gene profiles for cancer diagnosis. In this study, the authors propose a gene expression programming (GEP)‐based model to predict lung cancer from microarray data. The authors use two gene selection methods to extract the significant lung cancer related genes, and accordingly propose different GEP‐based prediction models. Prediction performance evaluations and comparisons between the authors’ GEP models and three representative machine learning methods, support vector machine, multi‐layer perceptron and radial basis function neural network, were conducted thoroughly on real microarray lung cancer datasets. Reliability was assessed by the cross‐data set validation. The experimental results show that the GEP model using fewer feature genes outperformed other models in terms of accuracy, sensitivity, specificity and area under the receiver operating characteristic curve. It is concluded that GEP model is a better solution to lung cancer prediction problems.Inspec keywords: lung, cancer, medical diagnostic computing, patient diagnosis, genetic algorithms, feature selection, learning (artificial intelligence), support vector machines, multilayer perceptrons, radial basis function networks, reliability, sensitivity analysisOther keywords: lung cancer prediction, cancer‐related death, cancer diagnosis, gene profiles, gene expression programming‐based model, gene selection, GEP‐based prediction models, prediction performance evaluations, representative machine learning methods, support vector machine, multilayer perceptron, radial basis function neural network, real microarray lung cancer datasets, cross‐data set validation, reliability, receiver operating characteristic curve  相似文献   

9.
10.
The study of gene regulatory network and protein–protein interaction network is believed to be fundamental to the understanding of molecular processes and functions in systems biology. In this study, the authors are interested in single nucleotide polymorphism (SNP) level and construct SNP–SNP interaction network to understand genetic characters and pathogenetic mechanisms of complex diseases. The authors employ existing methods to mine, model and evaluate a SNP sub‐network from SNP–SNP interactions. In the study, the authors employ the two SNP datasets: Parkinson disease and coronary artery disease to demonstrate the procedure of construction and analysis of SNP–SNP interaction networks. Experimental results are reported to demonstrate the procedure of construction and analysis of such SNP–SNP interaction networks can recover some existing biological results and related disease genes.Inspec keywords: biology computing, blood vessels, diseases, DNA, genetics, genomics, molecular biophysics, molecular configurations, polymorphism, proteins, RNAOther keywords: disease genes, coronary artery disease, datasets, Parkinson disease, complex diseases, pathogenetic mechanisms, genetic characters, systems biology functions, molecular processes, protein‐protein interaction network, gene regulatory network, single nucleotide polymorphism interaction networks  相似文献   

11.
12.
It has been proved and widely acknowledged that messenger RNAs can talk to each other by competing for a limited pool of miRNAs. The competing endogenous RNAs are called as ceRNAs. Although some researchers have recently used ceRNAs to do biological function annotations, few of them have investigated the ceRNA network on specific disease systematically. In this work, using both miRNA expression data and mRNA expression data of breast cancer patient as well as the miRNA target relations, the authors proposed a computational method to construct a breast‐cancer‐specific ceRNA network by checking whether the shared miRNA sponges between the gene pairs are significant. The ceRNA network is shown to be scale‐free, thus the topological characters such as hub nodes and communities may provide important clues for the biological mechanism. Through investigation on the communities (the dense clusters) in the network, it was found that they are related to cancer hallmarks. In addition, through function annotation of the hub genes in the network, it was found that they are related to breast cancer. Moreover, classifiers based on the discriminative hubs can significantly distinguish breast cancer patients’ risks of distant metastasis in all the three independent data sets.Inspec keywords: cancer, genetics, medical computing, molecular biophysics, RNAOther keywords: breast‐cancer specific ceRNA network construction, miRNA expression data, mRNA expression data, gene pairs, computational method, dense clusters, cancer hallmarks, biological mechanism, discriminative hub genes  相似文献   

13.
14.
15.
The natural products containing aristolochic acid (AA) have been widely used for acne, gastritis and so on. Recently, it is becoming accepted that AA may be responsible for acute and chronic renal failures as the side effects of Chinese herbs. However, it is unclear what happens in the cells after the AA treatment. In this study, the authors built a gene regulatory network as well as a microRNA–gene regulatory network to investigate the molecular dynamics induced by AA from a systematic perspective. With the regulatory networks, they detected some important pathways and biological processes that were affected by AA treatment, which can help explain the nephrotoxicity and carcinogenicity of AA. They found some important regulators and genes responding to AA treatment, and these genes have been reported to be related to the kidney functions, indicating their important roles in the toxicity of AA.Inspec keywords: kidney, toxicology, genetics, RNA, molecular biophysics, cancer, bioinformaticsOther keywords: aristolochic acid toxicities, rat kidneys, regulatory networks, acne, gastritis, acute renal failures, chronic renal failures, Chinese herbs, gene regulatory network, microRNA‐gene regulatory network, molecular dynamics, nephrotoxicity, carcinogenicity  相似文献   

16.
With rapid accumulation of functional relationships between biological molecules, knowledge‐based networks have been constructed and stocked in many databases. These networks provide curated and comprehensive information for functional linkages among genes and proteins, whereas their activities are highly related with specific phenotypes and conditions. To evaluate a knowledge‐based network in a specific condition, the consistency between its structure and conditionally specific gene expression profiling data are an important criterion. In this study, the authors propose a Gaussian graphical model to evaluate the documented regulatory networks by the consistency between network architectures and time course gene expression profiles. They derive a dynamic Bayesian network model to evaluate gene regulatory networks in both simulated and true time course microarray data. The regulatory networks are evaluated by matching network structure with gene expression to achieve consistency measurement. To demonstrate the effectiveness of the authors method, they identify significant regulatory networks in response to the time course of circadian rhythm. The knowledge‐based networks are screened and ranked by their structural consistencies with dynamic gene expression profiling.Inspec keywords: Bayes methods, biology computing, circadian rhythms, Gaussian processes, genetics, genomics, graphs, molecular biophysics, proteinsOther keywords: Gaussian graphical model, responsive regulatory networks, time course high‐throughput data, biological molecules, dynamic gene expression proflling, circadian rhythm, consistency measurement, matching network structure, simulated time course microarray data, true time course microarray data, dynamic Bayesian network model, time course gene expression proflles, network architectures, documented regulatory networks, speciflc gene expression proflling data, phenotypes, proteins, functional linkages, databases, knowledge‐based networks  相似文献   

17.
18.
The knowledge on the biological molecular mechanisms underlying cancer is important for the precise diagnosis and treatment of cancer patients. Detecting dysregulated pathways in cancer can provide insights into the mechanism of cancer and help to detect novel drug targets. Based on the wide existing mutual exclusivity among mutated genes and the interrelationship between gene mutations and expression changes, this study presents a network‐based method to detect the dysregulated pathways from gene mutations and expression data of the glioblastoma cancer. First, the authors construct a gene network based on mutual exclusivity between each pair of genes and the interaction between gene mutations and expression changes. Then they detect all complete subgraphs using CFinder clustering algorithm in the constructed gene network. Next, the two gene sets whose overlapping scores are above a specific threshold are merged. Finally, they obtain two dysregulated pathways in which there are glioblastoma‐related multiple genes which are closely related to the two subtypes of glioblastoma. The results show that one dysregulated pathway revolving around epidermal growth factor receptor is likely to be associated with the primary subtype of glioblastoma, and the other dysregulated pathway revolving around TP53 is likely to be associated with the secondary subtype of glioblastoma.Inspec keywords: cancer, tumours, drugs, brain, neurophysiology, genetic algorithms, genetics, skin, proteins, molecular biophysics, genomics, patient diagnosis, molecular configurationsOther keywords: network‐based method, dysregulated pathways detection, glioblastoma cancer, biological molecular mechanisms, precise diagnosis, cancer patient treatment, drug targets, mutual exclusivity, mutated genes, gene mutations, expression changes, expression data, CFinder clustering algorithm, constructed gene network, gene sets, overlapping scores, glioblastoma‐related multiple genes, epidermal growth factor receptor, TP53, secondary subtype  相似文献   

19.
20.
Identification of oncogenic genes from a large sample number of genomic data is a challenge. In this study, a well‐established latent factor model, Bayesian factor and regression model, are applied to predict unknown colon cancer related genes from colon adenocarcinoma genomic data. Four important latent factors were addressed by the latent factor model, focusing on characterisation of heterogeneity of expression patterns of specific oncogenic genes by using microarray data of 174 colon cancer patients. Based on the fact that variables included in the same latent factor have some common characteristics and known cancer related genes in Online Mendelian Inheritance in Man, the authors found that the four latent factors can be employed to predict unknown colon cancer related genes that were never reported in the literature. The authors validated 15 identified genes by checking their somatic mutations of the same patients from DNA sequencing data.Inspec keywords: Bayes methods, biological organs, cancer, DNA, genetics, genomics, lab‐on‐a‐chip, medical diagnostic computing, molecular biophysics, physiological models, regression analysisOther keywords: latent factor analysis, oncogenic genes, colon adenocarcinoma, genomic data, Bayesian factor, colon cancer related genes, heterogeneity, expression patterns, DNA microarray data, Online Mendelian Inheritance in Man, somatic mutations, DNA sequencing data  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号