首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Inferring gene regulatory networks (GRNs) from microarray expression data are an important but challenging issue in systems biology. In this study, the authors propose a Bayesian information criterion (BIC)‐guided sparse regression approach for GRN reconstruction. This approach can adaptively model GRNs by optimising the l 1 ‐norm regularisation of sparse regression based on a modified version of BIC. The use of the regularisation strategy ensures the inferred GRNs to be as sparse as natural, while the modified BIC allows incorporating prior knowledge on expression regulation and thus avoids the overestimation of expression regulators as usual. Especially, the proposed method provides a clear interpretation of combinatorial regulations of gene expression by optimally extracting regulation coordination for a given target gene. Experimental results on both simulation data and real‐world microarray data demonstrate the competent performance of discovering regulatory relationships in GRN reconstruction.Inspec keywords: genetics, Bayes methods, genomics, regression analysis, inference mechanisms, bioinformaticsOther keywords: adaptive modelling, gene regulatory network, Bayesian information criterion‐guided sparse regression approach, GRN, microarray expression data, systems biology, GRN reconstruction, optimisation, l1 ‐norm regularisation  相似文献   

4.
Genes regulate each other and form a gene regulatory network (GRN) to realise biological functions. Elucidating GRN from experimental data remains a challenging problem in systems biology. Numerous techniques have been developed and sparse linear regression methods become a promising approach to infer accurate GRNs. However, most linear methods are either based on steady‐state gene expression data or their statistical properties are not analysed. Here, two sparse penalties, adaptive least absolute shrinkage and selection operator and smoothly clipped absolute deviation, are proposed to infer GRNs from time‐course gene expression data based on an auto‐regressive model and their Oracle properties are proved under mild conditions. The effectiveness of those methods is demonstrated by applications to in silico and real biological data.Inspec keywords: genetics, autoregressive processesOther keywords: sparse penalties, gene regulatory networks, time‐course gene expression data, GRN, biological functions, systems biology, sparse linear regression methods, steady‐state gene expression data, adaptive least absolute shrinkage, selection operator, smoothly clipped absolute deviation, autoregressive model, Oracle properties  相似文献   

5.
Glioblastoma multiforme (GBM) is the most common and aggressive type of primary brain tumor in adults. Patients with this disease have a poor prognosis. The objective of this study is to identify survival‐related individual genes (or miRNAs) and miRNA ‐mRNA pairs in GBM using a multi‐step approach. First, the weighted gene co‐expression network analysis and survival analysis are applied to identify survival‐related modules from mRNA and miRNA expression profiles, respectively. Subsequently, the role of individual genes (or miRNAs) within these modules in GBM prognosis are highlighted using survival analysis. Finally, the integration analysis of miRNA and mRNA expression as well as miRNA target prediction is used to identify survival‐related miRNA ‐mRNA regulatory network. In this study, five genes and two miRNA modules that significantly correlated to patient''s survival. In addition, many individual genes (or miRNAs) assigned to these modules were found to be closely linked with survival. For instance, increased expression of neuropilin‐1 gene (a member of module turquoise) indicated poor prognosis for patients and a group of miRNA ‐mRNA regulatory networks that comprised 38 survival‐related miRNA ‐mRNA pairs. These findings provide a new insight into the underlying molecular regulatory mechanisms of GBM.Inspec keywords: RNA, molecular biophysics, genetics, cancerOther keywords: signature regulatory network, glioblastoma prognosis, mRNA coexpression analysis, miRNA coexpression analysis, glioblastoma multiforme, brain tumour, microRNAs, pathogenesis, genome‐wide regulatory networks, miRNA‐mRNA pairs, weighted gene coexpression network analysis, survival analysis, GBM prognosis, integration analysis, neuropilin‐1 gene, module turquoise, molecular regulatory mechanisms  相似文献   

6.
With rapid accumulation of functional relationships between biological molecules, knowledge‐based networks have been constructed and stocked in many databases. These networks provide curated and comprehensive information for functional linkages among genes and proteins, whereas their activities are highly related with specific phenotypes and conditions. To evaluate a knowledge‐based network in a specific condition, the consistency between its structure and conditionally specific gene expression profiling data are an important criterion. In this study, the authors propose a Gaussian graphical model to evaluate the documented regulatory networks by the consistency between network architectures and time course gene expression profiles. They derive a dynamic Bayesian network model to evaluate gene regulatory networks in both simulated and true time course microarray data. The regulatory networks are evaluated by matching network structure with gene expression to achieve consistency measurement. To demonstrate the effectiveness of the authors method, they identify significant regulatory networks in response to the time course of circadian rhythm. The knowledge‐based networks are screened and ranked by their structural consistencies with dynamic gene expression profiling.Inspec keywords: Bayes methods, biology computing, circadian rhythms, Gaussian processes, genetics, genomics, graphs, molecular biophysics, proteinsOther keywords: Gaussian graphical model, responsive regulatory networks, time course high‐throughput data, biological molecules, dynamic gene expression proflling, circadian rhythm, consistency measurement, matching network structure, simulated time course microarray data, true time course microarray data, dynamic Bayesian network model, time course gene expression proflles, network architectures, documented regulatory networks, speciflc gene expression proflling data, phenotypes, proteins, functional linkages, databases, knowledge‐based networks  相似文献   

7.
8.
The study of gene regulatory network and protein–protein interaction network is believed to be fundamental to the understanding of molecular processes and functions in systems biology. In this study, the authors are interested in single nucleotide polymorphism (SNP) level and construct SNP–SNP interaction network to understand genetic characters and pathogenetic mechanisms of complex diseases. The authors employ existing methods to mine, model and evaluate a SNP sub‐network from SNP–SNP interactions. In the study, the authors employ the two SNP datasets: Parkinson disease and coronary artery disease to demonstrate the procedure of construction and analysis of SNP–SNP interaction networks. Experimental results are reported to demonstrate the procedure of construction and analysis of such SNP–SNP interaction networks can recover some existing biological results and related disease genes.Inspec keywords: biology computing, blood vessels, diseases, DNA, genetics, genomics, molecular biophysics, molecular configurations, polymorphism, proteins, RNAOther keywords: disease genes, coronary artery disease, datasets, Parkinson disease, complex diseases, pathogenetic mechanisms, genetic characters, systems biology functions, molecular processes, protein‐protein interaction network, gene regulatory network, single nucleotide polymorphism interaction networks  相似文献   

9.
A large amount of available protein–protein interaction (PPI) data has been generated by high‐throughput experimental techniques. Uncovering functional modules from PPI networks will help us better understand the underlying mechanisms of cellular functions. Numerous computational algorithms have been designed to identify functional modules automatically in the past decades. However, most community detection methods (non‐overlapping or overlapping types) are unsupervised models, which cannot incorporate the well‐known protein complexes as a priori. The authors propose a novel semi‐supervised model named pairwise constrains nonnegative matrix tri‐factorisation (PCNMTF), which takes full advantage of the well‐known protein complexes to find overlapping functional modules based on protein module indicator matrix and module correlation matrix simultaneously from PPI networks. PCNMTF determinately models and learns the mixed module memberships of each protein by considering the correlation among modules simultaneously based on the non‐negative matrix tri‐factorisation. The experiment results on both synthetic and real‐world biological networks demonstrate that PCNMTF gains more precise functional modules than that of state‐of‐the‐art methods.Inspec keywords: proteins, molecular biophysics, cellular biophysics, matrix algebraOther keywords: overlapping functional module detection, PPI network, pair‐wise constrained nonnegative matrix trifactorisation, protein–protein interaction data, cellular functions, protein complexes, real‐world biological networks, synthetic biological networks  相似文献   

10.
Direct relationships between biological molecules connected in a gene co‐expression network tend to reflect real biological activities such as gene regulation, protein–protein interactions (PPIs), and metabolisation. As correlation‐based networks contain numerous indirect connections, those direct relationships are always ‘hidden’ in them. Compared with the global network, network communities imply more biological significance on predicting protein function, detecting protein complexes and studying network evolution. Therefore, identifying direct relationships in communities is a pervasive and important topic in the biological sciences. Unfortunately, this field has not been well studied. A major thrust of this study is to apply a deconvolution algorithm on communities stemming from different gene co‐expression networks, which are constructed by fixing different thresholds for robustness analysis. Using the fifth Dialogue on Reverse Engineering Assessment and Methods challenge (DREAM5) framework, the authors demonstrate that nearly all new communities extracted from a ‘deconvolution filter’ contain more genuine PPIs than before deconvolution.Inspec keywords: proteins, deconvolution, genetics, bioinformatics, biology computing, molecular biophysicsOther keywords: identifying genuine protein–protein interactions, gene co‐expression network, deconvolution method, direct relationships, biological molecules, biological activities, gene regulation, correlation‐based networks, numerous indirect connections, global network, network communities, biological significance, protein function, protein complexes, studying network evolution, biological sciences, different gene co‐expression networks  相似文献   

11.
Reverse engineering of gene regulatory network (GRN) is an important and challenging task in systems biology. Existing parameter estimation approaches that compute model parameters with the same importance are usually computationally expensive or infeasible, especially in dealing with complex biological networks.In order to improve the efficiency of computational modeling, the paper applies a hierarchical estimation methodology in computational modeling of GRN based on topological analysis. This paper divides nodes in a network into various priority levels using the graph‐based measure and genetic algorithm. The nodes in the first level, that correspond to root strongly connected components(SCC) in the digraph of GRN, are given top priority in parameter estimation. The estimated parameters of vertices in the previous priority level ARE used to infer the parameters for nodes in the next priority level. The proposed hierarchical estimation methodology obtains lower error indexes while consuming less computational resources compared with single estimation methodology. Experimental outcomes with insilico networks and a realistic network show that gene networks are decomposed into no more than four levels, which is consistent with the properties of inherent modularity for GRN. In addition, the proposed hierarchical parameter estimation achieves a balance between computational efficiency and accuracy.Inspec keywords: biology computing, network theory (graphs), reverse engineering, graph theory, genetics, genetic algorithms, directed graphs, parameter estimationOther keywords: hierarchical parameter estimation, GRN, topological analysis, gene regulatory network, important task, computational systems biology, compute model parameters, complex biological networks, efficient information, model quality, parameter reliability, computational modelling, study divides nodes, priority levels, graph‐based measure, previous priority level, hierarchical estimation methodology obtains, computational resources, single time estimation, insilico network, realistic network show, computational efficiency  相似文献   

12.
13.
Protein–protein interaction (PPI) networks are crucial for organisms. Many research efforts have thus been devoted to the study on the topological properties and models of PPI networks. However, existing studies did not always report consistent results on the topological properties of PPI networks. Although a number of PPI network models have been introduced, yet in the literature there is no convincing conclusion on which model is best for describing PPI networks. This situation is primarily caused by the incompleteness of current PPI datasets. To solve this problem, in this study, the authors propose to revisit the topological properties and models of PPI networks from the perspective of PPI dataset evolution. Concretely, they used 12 PPI datasets of Arabidopsis thaliana and 10 PPI datasets of Saccharomyces cerevisiae from different Biological General Repository for Interaction Datasets (BioGRID) database versions, and compared the topological properties of these datasets and the fitting capabilities of five typical PPI network models over these datasets.Inspec keywords: proteins, molecular biophysics, microorganisms, cellular biophysicsOther keywords: topological properties, protein‐protein interaction networks, PPI network models, PPI dataset evolution, Arabidopsis thaliana, Saccharomyces cerevisiae, Biological General Repository‐for‐Interaction Datasets database, BioGRID database  相似文献   

14.
15.
It has been proved and widely acknowledged that messenger RNAs can talk to each other by competing for a limited pool of miRNAs. The competing endogenous RNAs are called as ceRNAs. Although some researchers have recently used ceRNAs to do biological function annotations, few of them have investigated the ceRNA network on specific disease systematically. In this work, using both miRNA expression data and mRNA expression data of breast cancer patient as well as the miRNA target relations, the authors proposed a computational method to construct a breast‐cancer‐specific ceRNA network by checking whether the shared miRNA sponges between the gene pairs are significant. The ceRNA network is shown to be scale‐free, thus the topological characters such as hub nodes and communities may provide important clues for the biological mechanism. Through investigation on the communities (the dense clusters) in the network, it was found that they are related to cancer hallmarks. In addition, through function annotation of the hub genes in the network, it was found that they are related to breast cancer. Moreover, classifiers based on the discriminative hubs can significantly distinguish breast cancer patients’ risks of distant metastasis in all the three independent data sets.Inspec keywords: cancer, genetics, medical computing, molecular biophysics, RNAOther keywords: breast‐cancer specific ceRNA network construction, miRNA expression data, mRNA expression data, gene pairs, computational method, dense clusters, cancer hallmarks, biological mechanism, discriminative hub genes  相似文献   

16.
17.
Network alignment is an important bridge to understanding human protein–protein interactions (PPIs) and functions through model organisms. However, the underlying subgraph isomorphism problem complicates and increases the time required to align protein interaction networks (PINs). Parallel computing technology is an effective solution to the challenge of aligning large‐scale networks via sequential computing. In this study, the typical Hungarian‐Greedy Algorithm (HGA) is used as an example for PIN alignment. The authors propose a HGA with 2‐nearest neighbours (HGA‐2N) and implement its graphics processing unit (GPU) acceleration. Numerical experiments demonstrate that HGA‐2N can find alignments that are close to those found by HGA while dramatically reducing computing time. The GPU implementation of HGA‐2N optimises the parallel pattern, computing mode and storage mode and it improves the computing time ratio between the CPU and GPU compared with HGA when large‐scale networks are considered. By using HGA‐2N in GPUs, conserved PPIs can be observed, and potential PPIs can be predicted. Among the predictions based on 25 common Gene Ontology terms, 42.8% can be found in the Human Protein Reference Database. Furthermore, a new method of reconstructing phylogenetic trees is introduced, which shows the same relationships among five herpes viruses that are obtained using other methods.Inspec keywords: graphics processing units, proteins, molecular biophysics, genetics, microorganisms, medical computing, bioinformaticsOther keywords: graphics processing unit‐based alignment, protein interaction networks, network alignment, human protein–protein interactions, Hungarian‐Greedy algorithm, GPU acceleration, gene ontology terms, phylogenetic trees reconstruction, herpes viruses  相似文献   

18.
19.
Gene Regulatory Networks (GRNs) are reconstructed from the microarray gene expression data through diversified computational approaches. This process ensues in symmetric and diagonal interaction of gene pairs that cannot be modelled as direct activation, inhibition, and self‐regulatory interactions. The values of gene co‐expressions could help in identifying co‐regulations among them. The proposed approach aims at computing the differences in variances of co‐expressed genes rather than computing differences in values of mean expressions across experimental conditions. It adopts multivariate co‐variances using principal component analysis (PCA) to predict an asymmetric and non‐diagonal gene interaction matrix, to select only those gene pair interactions that exhibit the maximum variances in gene regulatory expressions. The asymmetric gene regulatory interactions help in identifying the controlling regulatory agents, thus lowering the false positive rate by minimizing the connections between previously unlinked network components. The experimental results on real as well as in silico datasets including time‐series RTX therapy, Arabidopsis thaliana, DREAM‐3, and DREAM‐8 datasets, in comparison with existing state‐of‐the‐art approaches demonstrated the enhanced performance of the proposed approach for predicting positive and negative feedback loops and self‐regulatory interactions. The generated GRNs hold the potential in determining the real nature of gene pair regulatory interactions.Inspec keywords: molecular biophysics, principal component analysis, genetics, biology computing, reverse engineeringOther keywords: controlling regulatory agents, interacting genes, unlinked network components, self‐regulatory interactions, gene pair regulatory interactions, self‐regulatory network motifs, reverse engineering gene regulatory networks, microarray gene expression data, diversified computational approaches, symmetric interaction, diagonal interaction, gene pairs, gene co‐expressions, co‐expressed genes, mean expressions, gene regulatory expressions, asymmetric gene regulatory interactions  相似文献   

20.
Computational clustering methods help identify functional modules in protein–protein interaction (PPI) network, in which proteins participate in the same biological pathways or specific functions. Subcellular localisation is crucial for proteins to implement biological functions and each compartment accommodates specific portions of the protein interaction structure. However, the importance of protein subcellular localisation is often neglected in the studies of module identification. In this study, the authors propose a novel procedure, subcellular module identification with localisation expansion (SMILE), to identify super modules that consist of several subcellular modules performing specific biological functions among cell compartments. These super modules identified by SMILE are more functionally diverse and have been verified to be more associated with known protein complexes and biological pathways compared with the modules identified from the global PPI networks in both the compartmentalised PPI and InWeb_InBioMap datasets. The authors’ results reveal that subcellular localisation is a principal feature of functional modules and offers important guidance in detecting biologically meaningful results.Inspec keywords: cellular biophysics, proteins, molecular biophysicsOther keywords: subcellular module identification, localisation expansion, computational clustering methods, protein‐protein interaction network, biological functions, protein interaction structure, protein subcellular localisation, subcellular modules, InWeb‐InBioMap datasets, subcellular localisation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号