首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Four subtypes of breast cancer, luminal A, luminal B, basal‐like, human epidermal growth factor receptor‐enriched, have been identified based on gene expression profiles of human tumours. The goal of this study is to find whether the same groups'' genes would exhibit different networks among the four subtypes. Differential expressed genes between each of the four subtypes and the normal samples were identified. The overlaps between the four groups of differentially expressed genes were used to construct regulations networks for each of the four subtypes. Univariate and multivariate Cox regressions were employed to test the genes in the four regulation networks. This study demonstrated that the common genes in four subtypes showed different regulation. Also, the hsa‐miR‐182 and decorin pair performs different functions among the four subtypes of breast cancer. The result indicated that heterogeneity of breast cancer is not only reflected in the different expression patterns among different genes, but also in the different regulatory networks of the same group of genes.Inspec keywords: genetics, cellular biophysics, tumours, molecular biophysics, RNA, biochemistry, cancer, proteins, biology computingOther keywords: decorin pair performs different functions, breast cancer heterogeneity, regulatory networks, specific microRNA–messenger, regulation pairs, human epidermal growth factor receptor, gene expression profiles, differentially expressed genes, regulations networks, hsa‐miR‐182, decorin pair, human tumours  相似文献   

3.
Liver hepatocellular carcinoma (LIHC) comprises most cases of liver cancer with a poor prognosis. N 6‐methyladenosine (m6A) plays important biological functions in cancers. Thus, the present research was aimed to determine biomarkers of m6A regulators that could effectively predict the prognosis of LIHC patients. Based on the data collected from the Cancer Genome Atlas (TCGA) database, the correlation between the mRNA expression levels and copy number variation (CNV) patterns were determined. Higher mRNA expression resulted from the increasing number of 9 genes. Using the univariate Cox regression analysis, 11 m6A regulators that had close correlations with the LIHC prognosis were identified. In addition, under the support of the multivariate Cox regression models and the least absolute shrinkage and selection operator, a 4‐gene (YTHDF2, IGF2BP3, KIAA1429, and ALKBH5) signature of m6A regulators was constructed. This signature was expected to present a prognostic value in LIHC (log‐rank test p value < 0.0001). The GSE76427 (n = 94) and ICGC‐LIRI‐JP (n = 212) datasets were used to validate the prognostic signature, suggesting strong power to predict patients'' prognosis for LIHC. To sum up, genetic alterations in m6A regulatory genes were identified as reliable and effective biomarkers for predicting the prognosis of LIHC patients.  相似文献   

4.
Cisplatin treatment results in acute kidney injury (AKI) by the phosphorylation of mixed lineage kinase domain‐like protein (MLKL). The knockout of MLKL, which is a principle mediator of necroptosis, is believed to alleviate the AKI symptoms. The present study was aimed to improve the therapeutic efficacy in AKI. For this purpose, miR‐500a‐3P was identified as appropriate miRNA therapeutics and loaded in liposome delivery carrier. The authors have showed that the miR‐LIP directly controls the expression of RIPK3 and MLKL – a modulator of necroptosis and thereby reduces the severity of kidney injury. The miR‐LIP significantly controlled the phosphorylation of MLKL compared to that of CDDP‐treated HK2 cells. Similar results are observed with RIPK3. The miR‐LIP has also been demonstrated to control the inflammatory response in tubular cells. Western blot analysis further revealed that the phosphorylation of P‐65 was mainly responsible for the inflammatory response and miR‐LIP significantly decreased the CDDP‐induced NF‐kB phosphorylation. Overall, the present study explored the molecular mechanism behind the necroptosis in AKI and potential of miRNA in targeting MLKL pathways. Study further highlights the potential advantage of liposome as a delivery carrier for miRNA therapeutics.Inspec keywords: medical disorders, biochemistry, cancer, cellular biophysics, kidney, enzymes, drugs, toxicology, patient treatment, injuries, genetics, molecular biophysicsOther keywords: current 500.0 A, functional role, microRNA‐500a‐3P‐loaded liposomes, cisplatin‐induced AKI, cisplatin treatment results, acute kidney injury, phosphorylation, mixed lineage kinase domain, necroptosis, AKI symptoms, therapeutic efficacy, appropriate miRNA therapeutics, liposome delivery carrier, miR‐LIP, RIPK3, inflammatory response, CDDP‐induced NF‐kB, MLKL pathways  相似文献   

5.
The main aim of present study is to evaluate the effect of miR‐30b on the function of human proximal tubular epithelial cell line HK‐2 cells. For this purpose, miRNA was loaded in an ionically cross‐linked polysaccharide nanoparticle. The authors have demonstrated the influence of miR‐30b mimic and inhibitor in HK‐2 cell killing effect. Lipopolysaccharide (LPS) significantly increased the level of inflammatory cytokines of TNF‐α, IL‐1β and level was further increased with the treatment of PAg‐miR mimic consistent with the cell viability assay. Interestingly, PAg‐miR inhibitor significantly downregulated the expression of inflammatory cytokines and thereby reduced the inflammation in the body. Western blot analysis showed that LPS induced severe apoptosis of HK‐2 cells and the apoptosis was further promoted by the PAg‐miR (mimic). In contrast, PAg‐miR (inhibitor) alleviated the apoptosis of HK‐2 cells as indicated in the significantly reduced levels of Bax and c‐Caspase‐3 proteins. Overall, miR‐30b promoted LPS‐induced HK‐2 cell inflammatory injury by inducing the apoptosis and by releasing inflammatory cytokines, as well as by impairing autophagy process.Inspec keywords: biomedical materials, nanoparticles, molecular biophysics, enzymes, toxicology, injuries, nanomedicine, RNA, cellular biophysics, kidney, proteins, drugs, biochemistryOther keywords: microRNA‐30b, nanoparticles suppressed the lipopolysaccharide (LPS)‐induced, main aim, human proximal tubular epithelial cell line HK‐2 cells, polysaccharide nanoparticle, HK‐2 cell killing effect, inflammatory cytokines, IL‐1β, cell viability assay, PAg‐miR inhibitor, apoptosis, reduced levels, LPS‐induced HK‐2 cell inflammatory injury  相似文献   

6.
A significant loss of p53 protein, an anti‐tumour agent, is observed in early cancerous cells. Induction of small molecules based drug is by far the most prominent technique to revive and maintain wild‐type p53 to the desired level. In this study, a sliding mode control (SMC) based robust non‐linear technique is presented for the drug design of a control‐oriented p53 model. The control input generated by conventional SMC is discontinuous; however, depending on the physical nature of the system, drug infusion needs to be continuous. Therefore, to obtain a smooth control signal, a dynamic SMC (DSMC) is designed. Moreover, the boundedness of the zero‐dynamics is also proved. To make the model‐based control design possible, the unknown states of the system are estimated using an equivalent control based, reduced‐order sliding mode observer. The robustness of the proposed technique is assessed by introducing input disturbance and parametric uncertainty in the system. The effectiveness of the proposed control scheme is witnessed by performing in‐silico trials, revealing that the sustained level of p53 can be achieved by controlled drug administration. Moreover, a comparative quantitative analysis shows that both controllers yield similar performance. However, DSMC consumes less control energy.Inspec keywords: control system synthesis, tumours, variable structure systems, observers, cancer, robust control, drugs, proteins, medical control systemsOther keywords: wild‐type p53, nonlinear technique, drug design, control‐oriented p53 model, control input, drug infusion, smooth control signal, dynamic SMC, zero‐dynamics, model‐based control design, input disturbance, controlled drug administration, sliding mode controller–observer pair, cancerous cells, antitumour agent, molecule based drug  相似文献   

7.
The goal of this study is to reveal the hub genes and molecular mechanisms of the coronavirus disease 2019 (COVID‐19) acute respiratory distress syndrome (ARDS) based on the genome‐wide RNA sequencing dataset. The RNA sequencing dataset of COVID‐19 ARDS was obtained from GSE163426. A total of 270 differentially expressed genes (DEGs) were identified between COVID‐19 ARDS and control group patients. Functional enrichment analysis of DEGs suggests that these DEGs may be involved in the following biological processes: response to cytokine, G‐protein coupled receptor activity, ionotropic glutamate receptor signalling pathway and G‐protein coupled receptor signalling pathway. By using the weighted correlation network analysis approach to analyse these DEGs, 10 hub DEGs that may play an important role in COVID‐19 ARDS were identified. A total of 67 potential COVID‐19 ARDS targetted drugs were identified by a complement map analysis. Immune cell infiltration analysis revealed that the levels of T cells CD4 naive, T cells follicular helper, macrophages M1 and eosinophils in COVID‐19 ARDS patients were significantly different from those in control group patients. In conclusion, this study identified 10 COVID‐19 ARDS‐related hub DEGs and numerous potential molecular mechanisms through a comprehensive analysis of the RNA sequencing dataset and also revealed the difference in immune cell infiltration of COVID‐19 ARDS.  相似文献   

8.
9.
Ischemic stroke (IS) is one of the major causes of death and disability worldwide. However, the specific mechanism of gene interplay and the biological function in IS are not clear. Therefore, more research into IS is necessary. Dataset GSE110993 including 20 ischemic stroke (IS) and 20 control specimens are used to establish both groups and the raw RNA‐seq data were analysed. Weighted gene co‐expression network analysis (WGCNA) was used to screen the key micro‐RNA modules. The centrality of key genes were determined by module membership (mm) and gene significance (GS). The key pathways were identified by enrichment analysis with Kyoto Protocol Gene and Genome Encyclopedia (KEGG), and the key genes were validated by protein‐protein interactions network. Result: Upon investigation, 1185 up‐ and down‐regulated genes were gathered and distributed into three modules in response to their degree of correlation to clinical traits of IS, among which the turquoise module show a trait‐correlation of 0.77. The top 140 genes were further identified by GS and MM. KEGG analysis showed two pathways may evolve in the progress of IS. Discussion: CXCL12 and EIF2a may be important biomarkers for the accurate diagnosis and treatment in IS.  相似文献   

10.
Malaria is a dangerous disease affecting humans and animals in tropical and subtropical areas worldwide. According to recent estimates, 3.2 billion people are at risk of malaria. Many drugs are in practices to control this disease and their vectors. Eco‐friendly control tools are needed to fight vectors of this important disease. Nanotechnology is playing a key role in the fight against many public health emergencies. In the present study, Lagenaria siceraria aqueous peel extract was used to prepare zinc oxide nanoparticles (ZnO NPs), then tested on Anopheles stephensi eggs, larvae and pupae. The L. siceraria ‐synthesised ZnO NPs were characterized additionally by FTIR, AFM, XRD, UV‐Vis spectroscopy, EDX, and SEM spectroscopy The ovicidal, larvicidal, pupicidal and repellent activities of L. siceraria and green‐synthesised ZnO NPs were analysed on A. stephensi. The potential mechanism of action of ZnO NPs was studied investigating the changes in various enzyme activities in A. stephensi IV instar larvae. Furthermore, the smoke toxicity of L. siceraria ‐based cones against A. stephensi evoked higher mortality if compared with the control. Overall, the present study concluded that L. siceraria peel extract and its mediated green synthesised ZnO NPs represent a valuable green option to manage against malaria vectors.Inspec keywords: X‐ray diffraction, Fourier transform spectra, nanomedicine, silver, enzymes, zinc compounds, nanotechnology, nanoparticles, diseases, pest control, transmission electron microscopy, pharmaceutical technology, health hazardsOther keywords: ZnO, nanotechnology, drugs, diseases, siceraria peel, scanning electron microscope spectroscopy, Fourier‐transform infrared spectroscopy, anopheles stephensi, malaria vector, lagenaria siceraria  相似文献   

11.
Gadolinium as a contrast agent in MRI technique combined with DTPA causes contrast induced nephropathy (CIN) and nephrogenic systemic fibrosis (NSF) which can reduce by usage of antioxidants such as N‐acetyl cysteine by increasing the membrane''s permeability leads to lower cytotoxicity. In this study, N ‐acetyl cysteine‐PLGA Nano‐conjugate was synthesized according to stoichiometric rules of molar ratios andafter assessment by FTIR, NMR spectroscopy and Atomic Force Microscopy (AFM) imaging was combined with Magnevist® (gadopentetate dimeglumine) and its effects on the renal cells were evaluated. MTT [3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐Diphenyltetrazolium Bromide] and cellular uptake assays have indicated relatively significant toxicity of magnevist (P  < 0.05) on three cell lines including HEK293, MCF7 and L929 compared to other synthesized ligands that shown no toxicity. Moreover, systemic evaluation has shown no notable changes of blood urea nitrogen (BUN) and creatinine in kidney of mice. In consequence, antioxidant effect was increased as well as the renal toxicity of the contrast agent reduced at the cell level. As a result, PLGA‐NAC nano‐conjugate can be a promising choice for decreasing the magnevist toxicity for treatment and prevention of CIN and will be able to open a new horizon to research on reduction of toxicity of contrast agents by using nanoparticles.Inspec keywords: blood, toxicology, nanofabrication, cellular biophysics, biomedical materials, nanoparticles, chromatography, cancer, biodegradable materials, biomedical MRI, kidney, pH, nanomedicine, patient treatment, diseases, atomic force microscopy, Fourier transform infrared spectraOther keywords: cellular toxicity, gadopentate dimeglumine, contrast agent, magnetic resonance imaging technique, diethylenetriamine pentaacetate, contrast‐induced nephropathy, nephrogenic systemic fibrosis, stoichiometric rules, molar ratios, dimethyl sulphoxide solution, chromatography techniques, nuclear magnetic resonance spectroscopy, atomic force microscopy imaging, Magnevist®, gadopentetate dimeglumine, renal cells, MTT cytotoxicity, human embryonic kidney‐293, L929 cell lines, in vitro conditions, cellular uptake assays, Magnevist uptake, antioxidant effect, renal toxicity, cell level, PLGA nanocarrier, acetylcysteine nanoconjugate, Magnevist toxicity, N‐acetylcysteine–PLGA nano‐conjugate, N‐acetyl cysteine‐poly‐lactic‐co‐glycolic acid nanoconjugate  相似文献   

12.
In the present study, amino‐functionalised mesoporous silica microspheres were utilised as support for the covalent immobilisation of Candida antarctica lipase B (CaLB) for the subsequent production of 2,5‐furandicarboxylic acid (FDCA) from 2,5‐diformylfuran (DFF). Under the optimised operating conditions of pH 6.5, particle/enzyme ratio of 1.25:1.0 and glutaraldehyde concentration of 4 mM, a maximum CaLB immobilisation yield of 82.4% on silica microspheres was obtained in 12.25 h. The immobilised CaLB was used for the synthesis of alkyl esters, which were utilised along with hydrogen peroxide for FDCA synthesis. The biocatalytic conversion of 30 mM DFF dictated a 77–79% FDCA in 48 h at 30°C; where the turnover number and turnover frequency of immobilised CaLB were 6220.73 mol mol−1 and 129.59 h−1, respectively, for ethyl acetate, against 6297.65 mol mol−1 and 131.2 h−1, respectively, for ethyl butyrate. Upon examining the operational stability, the immobilised CaLB exhibited high stability till five cycles of FDCA production.Inspec keywords: mesoporous materials, organic compounds, biotechnology, silicon compounds, renewable materials, catalysis, catalysts, enzymes, thermal stability, biofuelOther keywords: FDCA production, amino‐functionalised mesoporous silica microspheres, greener production, 2,5‐furandicarboxylic acid, covalent immobilisation, 2,5‐diformylfuran, CaLB immobilisation, Candida antarctica lipase B immobilisation, ethyl butyrate, time 48.0 hour, temperature 30.0 degC, time 12.25 hour  相似文献   

13.
Widespread resistance to antibiotics amongst pathogens has become a tremendous challenge of high morbidity and mortality rates which increases the needs to exploring novel methods of treatment. An efficient antimicrobial procedure to root out pathogenic bacteria is photothermal therapy. In this study, antimicrobial effects of a polypyrrole–carbon nanocomposite (PPy‐C) upon laser irradiation in order to destroy the pathogenic gram‐positive bacterium, methicillin‐resistant Staphylococcus aureus (MRSA) were assessed. The bacterial cells were incubated with 500, 750 and 1000 μg ml−1 concentrations of PPy‐C and irradiated with an 808‐nm laser at a power density of 1.0 W cm−2. To indicate the biocompatibility and toxic effect of the nanocomposite without and with laser irradiation, the authors counted the number of CFUs and compared it to an untreated sample. Antibacterial mechanisms of PPy‐C were assessed through temperature increment, reactive oxygen species production, and protein and DNA leakages. Photothermal heating assay showed that 26°C temperature increases in the presence of 1000 µg ml−1 PPy‐C led to >98% killing of MRSA. Furthermore, 20 min radiation of near‐infrared light to PPy‐C in different concentrations indicated destruction and reduction in the MRSA biofilm formation. Therefore, PPy‐C was introduced as a photothermal absorber with a bactericidal effect in MRSA.Inspec keywords: laser applications in medicine, biomedical materials, DNA, nanofabrication, biochemistry, nanocomposites, microorganisms, nanomedicine, cellular biophysics, antibacterial activity, molecular biophysics, proteinsOther keywords: photothermal inactivation, staphylococcus aureus, anti‐biofilm, polypyrrole–carbon nanocomposite, widespread resistance, bacterial pathogens, high morbidity, mortality rates, efficient antimicrobial procedure, pathogenic bacteria, photothermal therapy, antimicrobial effects, PPy‐C, laser irradiation, pathogenic gram‐positive bacterium, bacterial cells, biocompatibility, toxic effect, reactive oxygen species production, photothermal heating assay, MRSA biofilm formation, photothermal absorber, bactericidal effect, methicillin‐resistance, temperature 26.0 degC, time 20.0 min  相似文献   

14.
MiR‐155 plays a critical role in the formation of cancers and other diseases. In this study, the authors aimed to design and fabricate a biosensor based on cross‐linking gold nanoparticles (AuNPs) aggregation for the detection and quantification of miR‐155. Also, they intended to compare this method with SYBR Green real‐time polymerase chain reaction (PCR). Primers for real‐time PCR, and two thiolated capture probes for biosensor, complementary with miR‐155, were designed. Citrate capped AuNPs (18.7 ± 3.6 nm) were synthesised and thiolated capture probes immobilised to AuNPs. The various concentrations of synthetic miR‐155 were measured by this biosensor and real‐time PCR method. Colorimetric changes were studied, and the calibration curves were plotted. Results showed the detection limit of 10 nM for the fabricated biosensor and real‐time PCR. Also, eye detection using colour showed the weaker detection limit (1 µM), for this biosensor. MiR‐133b as the non‐complementary target could not cause a change in both colour and UV–visible spectrum. The increase in hydrodynamic diameter and negative zeta potential of AuNPs after the addition of probes verified the biosensor accurately fabricated. This fabricated biosensor could detect miR‐155 simpler and faster than previous methods.Inspec keywords: RNA, molecular biophysics, biochemistry, cancer, nanoparticles, gold, aggregation, surface plasmon resonance, molecular configurations, nanosensors, enzymes, calibration, ultraviolet spectra, visible spectra, eye, hydrodynamics, electrokinetic effects, biosensors, nanofabricationOther keywords: cross‐linking gold nanoparticles aggregation method, localised surface plasmon resonance, quantitative detection, cancers, diseases, biosensor, miR‐155 detection, miR‐155 quantification, SYBR green real‐time polymerase chain reaction, thiolated capture probes, citrate capped AuNPs, synthetic miR‐155, real‐time PCR method, colorimetric changes, calibration curves, eye detection, colour, detection limit, MiR‐133b, noncomplementary target, UV‐visible spectrum, hydrodynamic diameter, negative zeta potential, Au  相似文献   

15.
In this study, the synthesis of a series of bay‐substituted donor–acceptor–donor (D–A–D) type perylene diimide derivatives (3a–3d) has been reported as an acceptor for the small‐molecule‐based organic solar cells (SM‐OSCs) by the Suzuki coupling method. It has been evaluated for the antimicrobial activity against some of the bacteria and fungi. The synthesised SMs were confirmed by Fourier transform‐infrared spectroscopy, nuclear magnetic resonance (NMR), and high resolution mass spectroscopy (HR‐MS). The SMs showed absorption up to 750 nm, which eventually reduced the optical band gap Egopt to  < 2 eV. SMs showed thermal stability up to 400 °C. In the SM‐OSC, the SMs showed a power conversion efficiency of  < 1% with the P3HT donor in bulk hetero‐junction device structure. Additionally, the new SMs showed antimicrobial activity against Gram‐negative bacteria such as Escherichia coli Gram‐positive bacteria such as Bacillus subtilis and antifungal activity against the Candida albicans, and Aspergillus niger. Cytotoxicity studies were carried out against the breast cancer cell lines MCF‐7 using MTT assay method. The results revealed that the SMs was able to inhibit the cancer cells. LD50 s calculated for the SMs 3a–3d were between 200 and 400 µg/ml.Inspec keywords: antibacterial activity, solar cells, microorganisms, Fourier transform spectra, infrared spectra, nuclear magnetic resonance, photonic band gap, thermal stability, cellular biophysics, toxicology, cancer, nanomedicine, organic semiconductors, mass spectroscopy, biomedical materialsOther keywords: bay‐substituted perylene diimide‐based D‐A‐D‐type SM acceptors, donor‐acceptor‐donor type perylene diimide derivatives, small‐molecule‐based organic solar cells, SM‐OSC, Suzuki coupling method, antimicrobial activity, bacteria, fungi, Fourier transform infrared spectroscopy, NMR, HR‐MS, optical band gap, P3HT donor, bulk hetero‐junction device structure, Gram‐negative bacteria, Escherichia coli Gram‐positive bacteria, Bacillus subtilis, antifungal activity, Candida albicans, Aspergillus niger, cytotoxicity, breast cancer cell lines MCF‐7, MTT assay method, cancer cells, wavelength 750 nm, temperature 400 degC  相似文献   

16.
Lead (Pb) ions are a major concern to the environment and human health as they are contemplated cumulative poisons. In this study, facile synthesis of magnetic iron oxide–tea waste nanocomposite is reported for adsorptive removal of lead ions from aqueous solutions and easy magnetic separation of the adsorbent afterwards. The samples were characterised by scanning electron microscopy, Fourier transform‐infrared spectroscopy, X‐ray diffraction, and Braunner–Emmet–Teller nitrogen adsorption study. Adsorptive removal of Pb(II) ions from aqueous solution was followed by ultraviolet–visible (UV–Vis) spectrophotometry. About 95% Pb(II) ion removal is achieved with the magnetic tea waste within 10 min. A coefficient of regression R 2  ≃ 0.99 and adsorption density of 18.83 mg g−1 was found when Pb(II) ions were removed from aqueous solution using magnetic tea waste. The removal of Pb(II) ions follows the pseudo‐second‐order rate kinetics. External mass transfer principally regulates the rate‐limiting phenomena of adsorption of Pb(II) ions on iron oxide–tea waste surface. The results strongly imply that magnetic tea waste has promising potential as an economic and excellent adsorbent for the removal of Pb(II) from water.Inspec keywords: visible spectra, scanning electron microscopy, mass transfer, ultraviolet spectra, X‐ray diffraction, nanocomposites, lead, adsorption, magnetic separation, iron compounds, nanofabrication, Fourier transform infrared spectraOther keywords: FeO, Pb, time 10.0 min, X‐ray diffraction, Fourier transform‐infrared spectroscopy, scanning electron microscopy, adsorbent, magnetic separation, rapid removal, Braunner–Emmet–Teller nitrogen adsorption, iron oxide–tea waste surface, magnetic tea waste, aqueous solution, adsorptive removal, magnetic iron oxide–tea waste nanocomposite, lead(II) ions  相似文献   

17.
Diabetes mellitus has been considered as a heterogeneous metabolic disorder characterised by complete or relative impairment in the production of insulin by pancreatic β‐cells or insulin resistance. In the present study, propanoic acid, an active biocomponent isolated from Cassia auriculata is employed for the synthesis of propanoic acid functionalised gold nanoparticles (Pa@AuNPs) and its anti‐diabetic activity has been demonstrated in vitro. In vitro cytotoxicity of synthesised Pa@AuNPs was performed in L6 myotubes. The mode of action of Pa@AuNPs exhibiting anti‐diabetic potential was validated by glucose uptake assay in the presence of Genistein (insulin receptor tyrosine kinase inhibitor) and Wortmannin (Phosphatidyl inositide kinase inhibitor). Pa@AuNPs exhibited significant glucose uptake in L6 myotubes with maximum uptake at 50 ng/ml. Assays were performed to study the potential of Pa@AuNPs in the inhibition of protein‐tyrosine phosphatase 1B, α‐glucosidases, and α‐amylase activity.Inspec keywords: molecular biophysics, biomedical materials, sugar, enzymes, nanofabrication, gold, patient treatment, organic‐inorganic hybrid materials, biochemistry, diseases, cellular biophysics, nanoparticles, toxicology, nanomedicineOther keywords: glucose uptake assay, α‐amylase activity, organic–inorganic hybrid gold nanoparticles, diabetes mellitus, heterogeneous metabolic disorder, pancreatic β‐cells, insulin resistance, propanoic acid, antidiabetic potential, antidiabetic activity, in vitro cytotoxicity, L6 myotubes, Genistein, IRTK inhibitor, Wortmannin, P13K inhibitor, protein‐tyrosine phosphatase 1B, α‐glucosidases, Cassia auriculata, Au  相似文献   

18.
Honokiol (HK) is a natural product isolated from the bark, cones, seeds and leaves of plants belonging to the genus Magnolia. It possesses anti‐cancer activity which can efficiently impede the growth and bring about apoptosis of a diversity of cancer cells. The major concerns of using HK are its poor solubility and lack of targeted drug delivery. In this study, a combinatorial drug is prepared by combining HK and camptothecin (CPT). Both CPT and HK belong to the Magnolian genus and induce apoptosis by cell cycle arrest at the S‐phase and G1 phase, respectively. The combinatorial drug thus synthesised was loaded onto a chitosan functionalised graphene oxide nanoparticles, predecorated with folic acid for site‐specific drug delivery. The CPT drug‐loaded nanocarrier was characterised by X‐ray diffractometer, scanning electron microscope, transmission electron microscope, UV–vis spectroscopy and fluorescence spectroscopy, atomic force microscopy. The antioxidant properties, haemolytic activity and anti‐inflammatory activities were analysed. The cellular toxicity was analysed by 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐Diphenyltetrazolium Bromide (MTT assay) and Sulforhodamine B (SRB) assay against breast cancer (MCF‐7) cell lines.Inspec keywords: nanofabrication, cancer, nanoparticles, atomic force microscopy, graphene, scanning electron microscopy, cellular biophysics, toxicology, transmission electron microscopy, drug delivery systems, nanomedicine, tumours, solubilityOther keywords: targeted drug delivery, combinatorial drug, Magnolian genus, apoptosis, cell cycle, chitosan functionalised graphene oxide nanoparticles, site‐specific drug delivery, CPT drug‐loaded nanocarrier, transmission electron microscope, fluorescence spectroscopy, haemolytic activity, antiinflammatory activities, breast cancer cell lines, honokiol–camptothecin loaded graphene oxide nanoparticle, combinatorial anti‐cancer drug delivery, natural product, genus Magnolia, anticancer activity, cancer cells  相似文献   

19.
The electrochemiluminescence (ECL) system based on the ruthenium complex has become a powerful tool in the field of analytical chemistry. However, the non‐aqueous ECL luminescence system, which does not involve complex nano‐modification, has not been widely used for the determination of analytes. In this study, N ‐methyl pyrrolidone was selected as the solvent, and it could also act as a co‐reactant of Rubpy32+. Based on this, a simple ECL system without nanomaterials was established. Strong ECL was generated. Furthermore, a quenching effect between the excited state of Rubpy32+ and sulphamethoxazole (SMZ) was observed. Based on this, a sensitive ECL sensor for detecting SMZ is constructed. A linear relationship between ECL signal quenching intensity (ΔI) and the logarithm of SMZ concentration (log C) in the concentration range of 1 × 10−7 –1 × 10−5 mol/l is obtained. The limit of detection is as low as 3.33 × 10−9 mol/l. The method has been applied to the detection of SMZ in tap water samples with different concentration levels with satisfactory results, and the recovery was 95.3–102.6%.Inspec keywords: biosensors, electrochemical sensors, electroluminescence, chemiluminescence, organic compounds, electrochemistryOther keywords: ruthenium complex, analytical chemistry, nonaqueous ECL luminescence system, complex nanomodification, quenching effect, ECL signal quenching intensity, ECL sensor system, nanofree electrochemiluminescence biosensor system, sulphamethoxazole detection, tris(2,2′‐bipyridyl)ruthenium(II), N‐methyl pyrrolidone recognition, analyte determination, nanomaterials, SMZ concentration detection  相似文献   

20.
Pseudomonas aeruginosa lectin is purified and nanoparticle‐conjugated in an attempt to inhibit biofilm formation. Thirteen (23.6%) P. aeruginosa isolates are obtained from chicken meat samples, of which 30.8% are biofilm producers and 69.2% are lectin producers. Lectin is purified 36.8‐fold to final specific activity of 506.9 U/mg. Four nanoparticle types are prepared via laser ablation: platinum (Pt), gold (Au), silica oxide (SiO2), and tin oxide (SnO2). The four types are characterised, and pulse feeding is used to conjugate the lectin and nanoparticles. Pt, Au, SiO2, and SnO2 nanoparticles inhibit biofilm formation, especially SiO2 nanoparticles, which have higher effectiveness when conjugated with purified lectin. SiO2‐conjugated lectin significantly (p < 0.05) inhibits biofilm formation more effectively than control and other nanoparticle‐conjugated lectins. Au‐, Pt nanoparticle‐, and SnO2‐conjugated lectins inhibit biofilm significantly compared with control (p < 0.05), and rhlR gene expression is decreased in the presence of SiO2‐conjugated lectin. Furthermore, lectin and Pt, Au, SiO2 and SnO2 nanoparticles separately, and their conjugated lectins, are effective biofilm inhibitors. Of these, SiO2‐conjugated lectin was most significant as an anti‐biofilm. Moreover, virulence factors regulon and RhlR were reduced by SiO2‐conjugated lectin, indicating that this conjugation may also decrease the virulence of P. aeruginosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号