首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is planned to synthesise new biocompatible, nano antimicrobial formulation against biofilm producing strains. Aqueous root extract of Arctium lappa l. was used to synthesise ceria nanoparticles (CeO2 ‐NPs). The synthesised nanoparticles were encapsulated with nano‐chitosan by sol–gel method and characterised using standard techniques. Gas chromatography‐mass spectrometer of Arctium lappa l. revealed the presence of ethanol, acetone, 1‐ propanol, 2‐methylethane, 1,1‐di‐ethoxy, 1‐Butanol, and oleic acid acted as reducing and surface stabilising agents for tailoring morphology of CeO2 ‐NPs. Erythrocyte integrity after treatment with synthesised nanomaterials was evaluated by spectrophotometer measurement of haemoglobin release having biocompatibility. Scanning electron microscopy revealed the formation of mono dispersed beads shaped particles with mean particle size of 26.2 nm. X‐ray diffractometry revealed cubic crystalline structure having size of 28.0 nm. After encapsulation by nano‐chitosan, the size of CeO2 ‐NPs enhances to 48.8 nm making average coverage of about 22.6 nm. The synthesised nanomaterials were found effective to disrupt biofilm of S. aureus and P. aeruginosa. Interestingly, encapsulated CeO2 ‐NPs revealed powerful antibacterial and biofilm disruption activity examined by fluorescent live/dead staining using confocal laser scanning microscopy. The superior antibacterial activities exposed by encapsulated CeO2 ‐NPs lead to the conclusion that they could be useful for controlling biofilm producing multidrug resistance pathogens.Inspec keywords: particle size, microorganisms, organic compounds, nanomedicine, sol‐gel processing, cellular biophysics, scanning electron microscopy, optical microscopy, nanoparticles, antibacterial activity, fluorescence, biomedical materials, nanofabrication, X‐ray diffraction, chromatography, filled polymers, cerium compoundsOther keywords: microbial biofilms, aqueous root extract, sol–gel method, gas chromatography‐mass spectrometer, 1‐di‐ethoxy, 1‐Butanol, nanomaterial synthesis, mean particle size, antibacterial activities, ethanol, acetone, 1‐ propanol, biocompatible ceria‐nanoparticle encapsulation, nano‐chitosan, Arctium lappa l., oleic acid, erythrocyte integrity, spectrophotometer measurement, haemoglobin release, mono dispersed beads shaped particle formation, X‐ray diffractometry, cubic crystalline structure, fluorescent live/dead staining, confocal laser scanning microscopy, multidrug resistance pathogens, size 26.2 nm, size 28.0 nm, size 48.8 nm, size 22.6 nm, CeO2   相似文献   

2.
Cellulose is the natural biopolymer normally used as supporting agent with enhanced applicability and properties. In present study, cellulose isolated from citrus waste is used for silver nanoparticles (Ag‐NPs) impregnation by a simple and reproducible method. The Ag‐NPs fabricated cellulose (Ag‐Cel) was characterised by powder X‐rays diffraction, Fortier transform infrared spectroscopy and scanning electron microscopy. The thermal stability was studied by thermo‐gravimetric analysis. The antibacterial activity performed by disc diffusion assay reveals good zone of inhibition against Staphylococcus aureus and Escherichia coli by Ag‐Cel as compared Ag‐NPs. The discs also displayed more than 90% reduction of S. aureus culture in broth within 150 min. The Ag‐Cel discs also demonstrated minor 2,2‐diphenyl 1‐picryl‐hydrazyl radical scavenging activity and total reducing power ability while moderate total antioxidant potential was observed. Ag‐Cel effectively degrades methylene‐blue dye up to 63.16% under sunlight irradiation in limited exposure time of 60 min. The Ag‐NPs impregnated cellulose can be effectively used in wound dressing to prevent bacterial attack and scavenger of free radicals at wound site, and also as filters for bioremediation and wastewater purification.Inspec keywords: silver, nanoparticles, particle reinforced composites, nanocomposites, filled polymers, wounds, nanomedicine, biomedical materials, photochemistry, catalysis, X‐ray diffraction, Fourier transform infrared spectra, scanning electron microscopy, thermal stability, thermal analysis, antibacterial activity, dyes, wastewater treatment, contaminated site remediation, nanofabricationOther keywords: silver nanoparticles, impregnated cellulose composite, wound healing, photocatalysis, natural biopolymer, citrus waste, powder X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, thermal stability, thermo‐gravimetric analysis, antibacterial activity, disc diffusion assay, Staphylococcus aureus, Escherichia coli, inhibition zone, broth, 2,2‐diphenyl 1‐picryl‐hydrazyl radical scavenging activity, total reducing power ability, total antioxidant potential, methylene‐blue dye, sunlight irradiation, wound dressing, bacterial attack, free radical scavenger, wastewater purification, bioremediation filters, wound site, time 60 min, Ag  相似文献   

3.
Silver nanoparticles (AgNPs) were synthesised from aqueous Ag nitrate through a simple, competent and eco‐friendly method using the leaf extract of Ipomoea eriocarpa as reducing as well as capping agent. Ultraviolet–visible absorption spectroscopy was used to confirm the formation of AgNPs which displayed the substantiation of surface plasmon bands at 425 nm. The NPs were also characterised using Fourier transformer infrared spectroscopy, X‐ray diffraction method, transmission electron microscope and zeta potential. The characterisation study confirmed the formation of AgNPs, their spherical shape and average diameter of 12.85 ± 8.65 nm. Zeta potential value of −20.5 mV suggested that the AgNPs are stable in the suspension. The aqueous extract and the AgNPs were further screened for in vivo anti‐inflammatory activity using carrageenan‐induced paw edema in male Wistar rats. The study demonstrated that the AgNPs (1 ml kg−1) had a significant (p  < 0.05) anti‐edemic effect and inhibition was observed from the first hour (21.31 ± 1.34) until the sixth hour (52.67 ± 1.41), when the inhibitory effect was greatest and superior to the aqueous extract and the standard, diclofenac.Inspec keywords: silver, nanoparticles, nanofabrication, ultraviolet spectra, visible spectra, absorption coefficients, surface plasmons, Fourier transform infrared spectra, X‐ray diffraction, transmission electron microscopy, suspensions, drugs, nanomedicineOther keywords: biosynthesis, aqueous leaf extract, ipomoea eriocarpa, antiinflammatory effect, carrageenan‐induced paw edema, male Wistar rats, silver nanoparticles, aqueous nitrate, capping agent, ultraviolet‐visible absorption spectroscopy, surface plasmon band, Fourier transformer infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, zeta potential, spherical shape, suspension, aqueous extract, in vivo antiinflammatory activity, antiedemic effect, inhibitory effect, diclofenac, wavelength 425 nm, size 12.85 nm to 8.65 nm, Ag  相似文献   

4.
The bio‐green methods of synthesis nanoparticles (NPs) have advantages over chemo‐physical procedures due to cost‐effective and ecofriendly products. The goal of current investigation is biosynthesis of zinc oxide NPs (ZnO‐NPs) and evaluation of their biological assessment. Water extract of Brassica napus pollen [rapeseed (RP)] prepared and used for the synthesis of ZnO‐NPs and synthesised ZnO‐NP characterised using ultraviolet–visible, X‐ray diffraction, Fourier‐transform infrared spectroscopy, field emission scanning electron microscope and transmission electron microscope. Antioxidant properties of ZnO‐NPs, cytotoxic and pro‐apoptotic potentials of NPs were also evaluated. The results showed that ZnO‐NPs have a hexagonal shape with 26 nm size. ZnO‐NPs synthesised in RP (RP/ZnO‐NPs) exhibited the good antioxidant potential compared with the butylated hydroxyanisole as a positive control. These NPs showed the cytotoxic effects against breast cancer cells (M.D. Anderson‐Metastasis Breast cancer (MDA‐MB)) with IC50 about 1, 6 and 6 μg/ml after 24, 48 and 72 h of exposure, respectively. RP/ZnO‐NPs were found effective in increasing the expression of catalase enzyme, the enzyme involved in antioxidants properties of the cells. Bio‐green synthesised RP/ZnO‐NPs showed antioxidant and cytotoxic properties. The results of the present study support the advantages of using the bio‐green procedure for the synthesis of NPs as an antioxidant and as anti‐cancer agents.Inspec keywords: II‐VI semiconductors, wide band gap semiconductors, ultraviolet spectra, toxicology, X‐ray diffraction, biochemistry, zinc compounds, nanomedicine, enzymes, biomedical materials, particle size, antibacterial activity, transmission electron microscopy, molecular biophysics, visible spectra, nanofabrication, cellular biophysics, nanoparticles, cancer, field emission scanning electron microscopy, Fourier transform infrared spectra, semiconductor growthOther keywords: bio‐green synthesis ZnO‐NPs, zinc oxide NPs, synthesised ZnO‐NP, field emission scanning electron microscope, transmission electron microscope, antioxidant properties, bio‐green synthesised RP‐ZnO‐NPs, Fourier‐transform infrared spectroscopy, X‐ray diffraction, breast cancer cells MDA‐MB, pro‐apoptotic potentials, cytotoxic effects, catalase enzyme, bio‐green procedure, time 48.0 hour, time 72.0 hour, size 26.0 nm, time 24.0 hour, ZnO  相似文献   

5.
A facile and green process to synthesise cuttlebone supported palladium nanoparticles (Pd NPs/cuttlebone) is reported using Conium maculatum leaf extract and in the absence of chemical solvents and hazardous materials. The antioxidant content of the C. maculatum leaf extract played a significant role in converting Pd2+ ions to Pd NPs. Various techniques were used for the characterisation of the Pd NPs/cuttlebone such as field‐emission scanning electron microscopy, X‐ray diffraction, energy dispersive X‐ray spectroscopy, Fourier transform infrared and ultraviolet–visible spectroscopy. This Pd NPs/cuttlebone showed excellent catalytic activity in the reduction of 2,4‐dinitrophenylhydrazine to 2,4‐diaminophenylhydrazine by sodium borohydride as the source of hydrogen at ambient condition. The catalyst could be separated and recycled up to five cycles with no loss of its activity.Inspec keywords: catalysis, catalysts, chemical engineering, palladium, nanoparticles, field emission electron microscopy, scanning electron microscopy, X‐ray diffraction, X‐ray chemical analysis, sodium compounds, ultraviolet spectroscopy, visible spectroscopyOther keywords: catalytic reduction, 2,4‐dinitrophenylhydrazine, cuttlebone, Conium maculatum leaf extract, green process, palladium nanoparticles, antioxidant content, field‐emission scanning electron microscopy, X‐ray diffraction, energy dispersive X‐ray spectroscopy, Fourier transform infrared, ultraviolet–visible spectroscopy, 2,4‐diaminophenylhydrazine, sodium borohydride  相似文献   

6.
It has been suggested that phosphate binders may reduce the inflammatory state of hemodialysis (HD) patients. However, it is not clear whether it has any effect on oxidative stress. The objective of this study was to evaluate the effect of sevelamer hydrochloride (SH) and calcium acetate (CA) on oxidative stress and inflammation markers in HD patients. Hemodialysis patients were randomly assigned to therapy with SH (n=17) or CA (n=14) for 1 year. Before the initiation of therapy (baseline) and at 12 months, we measured in vitro reactive oxygen species (ROS) production by stimulated and unstimulated polymorphonuclear neutrophils and serum levels of tumor necrosis factor α, interleukin-10, C-reactive protein, and albumin. There was a significant reduction of spontaneous ROS production in both groups after 12 months of therapy. There was a significant decrease of Staphylococcus aureus stimulated ROS production in the SH group. There was a significant increase in albumin serum levels only in the SH group. In the SH group, there was also a decrease in the serum levels of tumor necrosis factor α and C-reactive protein. Our results suggest that compared with CA treatment, SH may lead to a reduction in oxidative stress and inflammation. Therefore, it is possible that phosphate binders exert pleiotropic effects on oxidative stress and inflammation, which could contribute toward decreasing endothelial injury in patients in HD.  相似文献   

7.
The present study reports a simple and low cost synthesis of zero‐valent silver nanoparticles (ZVSNPs) from silver nitrate using the leaf extract of Spondias dulcis. The ZVSNPs showed a unique peak at 420 nm in UV–vis spectrum. The SEM image portrayed cuboidal shaped particles. The EDX spectrum designated the elemental silver peak at 3 keV. In XRD, a sharp peak at 32.47° denoted the existence of (1 0 1) lattice plane and the average crystallite size was calculated as 48.61 nm. The lattice parameter was determined as 0.39 nm. The FTIR spectra of the leaf extract and ZVSNPs showed shifts in the specific functional group bands which ascertained the involvement of phytoconstituents in the formation and capping of nanoparticles. The average hydrodynamic size was measured as 59.66 nm by DLS method. A low PDI, 0.187 witnessed the monodispersity. A negative zeta potential value of −15.7 mV indicated the negative surface charges of the nanoparticles. The bactericidal action of ZVSNPs was demonstrated against two pathogens S.typhimurium and E.coli during which a dosage dependent zone of inhibition results was observed. Additionally, the catalytic potential of ZVSNPs was examined for the degradation of methylene blue dye in which an accelerated degradation of the dye was observed.Inspec keywords: antibacterial activity, crystallites, electrokinetic effects, scanning electron microscopy, nanoparticles, particle size, ultraviolet spectra, X‐ray chemical analysis, microorganisms, light scattering, nanofabrication, materials preparation, X‐ray diffraction, visible spectra, silver, dyes, Fourier transform infrared spectraOther keywords: wavelength 420.0 nm, Ag, voltage ‐15.7 mV, size 59.66 nm, size 0.39 nm, size 48.61 nm, electron volt energy 3.0 keV, Fourier transform infrared spectra, methylene blue dye, bactericidal action, dynamic light scattering, lattice parameter, Escherichia coli, Salmonella typhimurium, Spondias dulcis, negative zeta potential, polydispersity index, crystallite size, leaf extract, X‐ray diffraction, energy dispersive X‐ray spectrum, cuboidal‐shaped particles, scanning electron microscopy image, ultraviolet–visible spectrum, silver nitrate, zero‐valent silver nanoparticles  相似文献   

8.
Wound healing has long been recognised as a major clinical challenge for which stablishing more effective wound therapies is necessary. The generation of metallic nanocomposites using biological compounds is emerging as a new promising strategy for this purpose. In this study, four metallic nanoparticles (NPs) with propolis extract (Ext) and one without propolis including ZnO/Ext, ZnO/Ag/Ext, ZnO/CuO/Ext, ZnO/Ag/CuO/Ext and ZnO/W were prepared by microwave method and assessed for their wound healing activity on excision experimental model of wounds in rats. The developed nanocomposites have been characterised by physico‐chemical methods such as X‐ray diffraction, scanning electron microscopy, diffuse reflectance UV–vis spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and Brunauer–Emmett–Teller analyses. The wounded animals treated with the NPs/Ext in five groups for 18 days. Every 6 days, for measuring wound closure rate, three samples of each group were examined for histopathological analysis. The prepared tissue sections were investigated by haematoxylin and Eosin stainings for the formation of epidermis, dermis and muscular and Masson''s trichrome staining for the formation of collagen fibres. These findings toughly support the probability of using this new ZnO/Ag/Ext materials dressing for a wound care performance with significant effect compared to other NPs.Inspec keywords: nanomedicine, X‐ray diffraction, II‐VI semiconductors, visible spectra, ultraviolet spectra, nanocomposites, biomedical materials, proteins, wounds, nanoparticles, scanning electron microscopy, nanofabrication, skin, zinc compounds, silver, antibacterial activity, Fourier transform infrared spectra, copper compounds, molecular biophysicsOther keywords: propolis, wound healing applications, effective wound, metallic nanocomposites, biological compounds, metallic nanoparticles, microwave method, wound healing activity, physico‐chemical methods, Fourier transform infrared spectroscopy, diffuse reflectance UV‐vis spectroscopy, Brunauer‐Emmett‐Teller analyses, wounded animals, wound closure rate, wound care performance, histopathological analysis, scanning electron microscopy, X‐ray diffraction, thermogravimetric analysis, haematoxylin, Eosin stainings, Masson trichrome, epidermis, muscular trichrome, collagen fibres, time 18.0 d, time 6.0 d, ZnO‐CuO‐Ag  相似文献   

9.
The focus of this study is on a rapid and cost‐effective approach for the synthesis of silver nanoparticles (AgNPs) using Artemisia quttensis Podlech aerial parts extract and assessment of their antioxidant, antibacterial and anticancer activities. The prepared AgNPs were determined by ultraviolet–visible spectroscopy, X‐ray diffraction, Fourier transform infra‐red spectroscopy, transmission electron microscopy, scanning electron microscopy, energy‐dispersive spectroscopy, and dynamic light scattering and zeta‐potential analysis. The AgNPs and A. quttensis extract were evaluated for their antiradical scavenging activity by 2, 2‐diphenyl, 1‐picryl hydrazyl assay and anticancer activity against colon cancer (human colorectal adenocarcinoma cell line 29) compared with normal human embryonic kidney (HEK293) cells. Also, the prepared AgNPs were studied for its antibacterial activity. The AgNPs revealed a higher antioxidant activity compared with A. quttensis extract alone. The phyto‐synthesised AgNPs and A. quttensis extract showed a dose–response cytotoxicity effect against HT29 and HEK293 cells. As evidenced by Annexin V/propidium iodide staining, the number of apoptotic HT29 cells was significantly enhanced, following treatment with AgNPs as compared with untreated cells. Besides, the antibacterial property of the AgNPs indicated a significant effect against the selected pathogenic bacteria. These present obtained results show the potential applications of phyto‐synthesised AgNPs using A. quttensis aerial parts extract.Inspec keywords: nanoparticles, silver, nanomedicine, cancer, transmission electron microscopy, ultraviolet spectroscopy, visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, electrokinetic effects, kidney, cellular biophysics, antibacterial activity, toxicology, patient treatmentOther keywords: anticancer properties, antibacterial properties, antioxidant properties, phytosynthesised Artemisia quttensis Podlech extract mediated AgNP, ultraviolet‐visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, energy‐dispersive spectroscopy, dynamic light scattering, zeta‐potential analysis, antiradical scavenging activity, 2,2‐diphenyl, 1‐picryl hydrazyl assay, anticancer activity, HT29 colon cancer, human embryonic kidney cells, HEK293 cells, A. quttensis extract, dose‐response cytotoxicity effect, Annexin V staining, apoptotic HT29 cells, pathogenic bacteria, propidium iodide staining, Ag  相似文献   

10.
In the present study, Ag/AgCl‐NPs were biosynthesised using Hypnea musciformis seaweed extract; NPs synthesis was confirmed by a change of colour and observation of a razor‐sharp peak at 424 nm by UV–visible spectroscopy. Synthesised nanoparticles were characterised by transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray powder diffraction and Fourier transform infrared spectroscopy. Bacterial cell growth inhibition proves that the Ag/AgCl‐NPs have strong antibacterial activity and cell morphological alteration was observed in treated bacterial cells using propidium iodide (PI). Ag/AgCl‐NPs inhibited Ehrlich ascites carcinoma (EAC) cells, colorectal cancer (HCT‐116) and breast cancer (MCF‐7) cell line in vitro with the IC50 values of 40.45, 24.08 and 36.95 μg/ml, respectively. Initiation of apoptosis in HCT‐116 and MCF‐7 cells was confirmed using PI, FITC‐annexin V and Hoechst 33342 dye. No reaction oxygen species generation was observed in both treated and untreated cell lines. A significant increase of ATG‐5 gene expression indicates the possibility of autophagy cell death besides apoptosis in MCF‐7 cells. The initiation of apoptosis in EAC cells was confirmed by observing caspase‐3 protein expression. Ag/AgCl‐NPs inhibited 22.83% and 51% of the EAC cell growth in vivo in mice when administered 1.5 and 3.0 mg/kg/day (i.p.), respectively, for 5 consequent days.  相似文献   

11.
Green synthesis of metal nanoparticles (NPs) has now received the attention of researchers due to ease of preparation and its potential to overcome hazards of these chemicals for an eco‐friendly milieu. In this study, copper oxide (CuO) NPs were synthesised via Desmodium gangeticum aqueous root extract and standard chemical method, further characterised by UV–visible spectroscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, Thermogravimetric analysis and scanning electron microscopy. The nephrotoxicity of the NP obtained from two routes were compared and evaluated at subcellular level in Wistar rat, renal proximal epithelial cells (LLC PK1 cell lines) and isolated renal mitochondria. CuO NP synthesised by chemical route showed prominent nephrotoxicity measured via adverse cytotoxicity to LLC PK1 cells, elevated renal oxidative stress and damage to renal tissue (determined by impaired alanine transaminase, aspartate transaminase, urea, uric acid and creatinine in the blood). However, at the level of cell organelle, CuO NP from both routes are non‐toxic to mitochondrial functional activity. The authors’ finding suggests that CuO NP synthesised by chemical route may induce nephrotoxicity, but may be overcome by co‐administration of antioxidants, as it is not mito‐toxic.Inspec keywords: cellular biophysics, scanning electron microscopy, toxicology, nanomedicine, oxidation, nanoparticles, enzymes, blood, visible spectra, X‐ray diffraction, biochemistry, nanofabrication, antibacterial activity, ultraviolet spectra, copper compounds, Fourier transform infrared spectra, molecular biophysics, thermal analysis, biological tissuesOther keywords: green synthesised copper oxide nanoparticles, murine model, metal nanoparticles, chemicals, eco‐friendly milieu, copper oxide NPs, standard chemical method, X‐ray diffraction, scanning electron microscopy, subcellular level, renal proximal epithelial cells, LLC PK1 cell lines, renal mitochondria, renal tissue, cell organelle, mitochondrial functional activity, UV‐visible spectroscopy, Fourier transform infrared spectroscopy, nephrotoxicity, renal oxidative stress, Desmodium gangeticum aqueous root extract, thermogravimetric analysis, Wistar rat, cytotoxicity, impaired alanine transaminase, aspartate transaminase, urea, uric acid, creatinine, blood, CuO  相似文献   

12.
In this study, an in‐situ approach was used to synthesise zinc oxide nanoparticles on the surface of cotton fabric. The effect of alkaline pre‐ and after‐treatment and Zn2+ concentration was studied on the morphological, structural, thermal, photocatalytic, and antibacterial properties of loaded cotton fabrics. Scanning electron microscopy, energy dispersive X‐ray spectroscopy, X‐ray diffractometer, thermogravimetric analysis, and attenuated total reflection Fourier transform infrared spectrometer were used to characterise the properties of loaded cotton fabrics. Alkaline after‐treatment of cotton fabric presented more dispersed zinc oxide nanoparticles, and an increase in Zn2+ concentration led to form agglomerated nanoparticles on the surface of cotton fibres. The loaded cotton fabrics with zinc oxide nanoparticles presented an inhibition zone against Staphylococcus aureus and Escherichia coli. In addition, the stain of methylene blue on the surface of loaded samples was degraded after irradiated under visible light.Inspec keywords: nanofabrication, zinc compounds, II‐VI semiconductors, nanoparticles, nanomedicine, antibacterial activity, catalysis, photochemistry, cotton fabrics, scanning electron microscopy, X‐ray chemical analysis, X‐ray diffraction, thermal analysis, attenuated total reflection, Fourier transform infrared spectroscopy, microorganisms, materials preparationOther keywords: alkaline treatment effect, in‐situ synthesised ZnO nanoparticles, alkaline pretreatment, alkaline after‐treatment, Zn2+ concentration, morphological property, structural property, thermal property, photocatalytic property, antibacterial property, loaded cotton fabrics, scanning electron microscopy, energy dispersive X‐ray spectroscopy, X‐ray diffractometer, thermogravimetric analysis, attenuated total reflection Fourier transform infrared spectrometer, agglomerated nanoparticles, zinc oxide nanoparticles, inhibition zone, Staphylococcus aureus, Escherichia coli, methylene blue, visible light, ZnO  相似文献   

13.
The biological method for synthesis of silver nanoparticles (AgNPs) using Bacopa monneri leaves and its anti‐proliferation against human lung adenocarcinoma cell line (A549) was studied. The AgNPs synthesis was determined by an ultraviolet–visible spectrum and was confirmed primarily by the colour change and surface plasmon resonance was observed at 450 nm and its reduction of functional groups stretched in AgNPs was identified by Fourier transform infrared and the crystalline nature of AgNPs was confirmed by X‐ray diffraction. The structural morphology of the AgNPs was found to be spherical and polygonal shape and size (> 35 nm) were determined by field emission scanning electron microscopy analysis and its purity was identified by energy dispersive analysis of X‐rays (EDAX). A further, antibacterial activity of biosynthesised AgNPs against Gram negative and Gram positive bacteria was assessed. The cytotoxic effect of synthesised AgNPs was analysed against human lung adenocarcinoma cells by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay. The GI50 was found to be 20 µg/ml at 24 h incubation. The apoptosis cells containing condensate and marginalised chromatin stages were analysed by propidium iodide staining and DNA damage was observed in A549 treated cells. The present study strongly emphasised that the bioactive molecule‐coated AgNPs could have potential for biomedical applications and significant anticancer effects against human lung adenocarcinoma cells.Inspec keywords: antibacterial activity, biomedical materials, lung, cancer, oxidation, nanoparticles, silver, nanofabrication, nanomedicine, cellular biophysics, ultraviolet spectra, visible spectra, surface plasmon resonance, Fourier transform infrared spectra, X‐ray diffraction, particle size, field emission electron microscopy, scanning electron microscopy, X‐ray chemical analysis, microorganisms, toxicology, DNA, molecular biophysics, molecular configurationsOther keywords: silver nanoparticles, phytofabrication, Bacopa monnieri leaf extract, antibacterial activity, oxidative stress‐induced apoptosis, biological method, antiproliferation, human lung adenocarcinoma cell line A549, AgNPs synthesis, ultraviolet‐visible spectrum, colour change, surface plasmon resonance, stretched functional groups, Fourier transform infrared spectra, crystalline nature, X‐ray diffraction, geometric spherical shape, polygonal shape, field emission scanning electron microscopy analysis, EDAX, biosynthesised AgNPs, gram negative bacteria, gram positive bacteria, cytotoxic effect, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, incubation, apoptosis cells, condensate, marginalised chromatin stages, propidium iodide staining, DNA damage, A549 treated cells, bioactive molecule‐coated AgNPs, biomedical applications, anticancer effects, time 24 h, Ag  相似文献   

14.
Cisplatin treatment results in acute kidney injury (AKI) by the phosphorylation of mixed lineage kinase domain‐like protein (MLKL). The knockout of MLKL, which is a principle mediator of necroptosis, is believed to alleviate the AKI symptoms. The present study was aimed to improve the therapeutic efficacy in AKI. For this purpose, miR‐500a‐3P was identified as appropriate miRNA therapeutics and loaded in liposome delivery carrier. The authors have showed that the miR‐LIP directly controls the expression of RIPK3 and MLKL – a modulator of necroptosis and thereby reduces the severity of kidney injury. The miR‐LIP significantly controlled the phosphorylation of MLKL compared to that of CDDP‐treated HK2 cells. Similar results are observed with RIPK3. The miR‐LIP has also been demonstrated to control the inflammatory response in tubular cells. Western blot analysis further revealed that the phosphorylation of P‐65 was mainly responsible for the inflammatory response and miR‐LIP significantly decreased the CDDP‐induced NF‐kB phosphorylation. Overall, the present study explored the molecular mechanism behind the necroptosis in AKI and potential of miRNA in targeting MLKL pathways. Study further highlights the potential advantage of liposome as a delivery carrier for miRNA therapeutics.Inspec keywords: medical disorders, biochemistry, cancer, cellular biophysics, kidney, enzymes, drugs, toxicology, patient treatment, injuries, genetics, molecular biophysicsOther keywords: current 500.0 A, functional role, microRNA‐500a‐3P‐loaded liposomes, cisplatin‐induced AKI, cisplatin treatment results, acute kidney injury, phosphorylation, mixed lineage kinase domain, necroptosis, AKI symptoms, therapeutic efficacy, appropriate miRNA therapeutics, liposome delivery carrier, miR‐LIP, RIPK3, inflammatory response, CDDP‐induced NF‐kB, MLKL pathways  相似文献   

15.
This study evaluated the biochemical, molecular, and histopathological mechanisms involved in the hypoglycaemic effect of zinc oxide nanoparticles (ZnONPs) in experimental diabetic rats. ZnONPs were prepared by the sol–gel method and characterised by scanning and transmission electron microscopy (SEM and TEM). To explore the possible hypoglycaemic and antioxidant effect of ZnONPs, rats were grouped as follows: control group, ZnONPs treated group, diabetic group, and diabetic + ZnONPs group. Upon treatment with ZnONPs, a significant alteration in the activities of superoxide dismutase, glutathione peroxidase, and the levels of insulin, haemoglobin A1c, and the expression of cluster of differentiation 4+ (CD4+), CD8+ T cells, glucose transporter type‐4 (GLUT‐4), tumour necrosis factor, and interleukin‐6 when compared to diabetic and their control rats. ZnONPs administration to the diabetic group showed eminent blood glucose control and restoration of the biochemical profile. This raises their active role in controlling pancreas functions to improve glycaemic status as well as the inflammatory responses. Histopathological investigations showed the non‐toxic and therapeutic effect of ZnONPs on the pancreas. TEM of pancreatic tissues displayed restoration of islets of Langerhans and increased insulin‐secreting granules. This shows the therapeutic application of ZnONPs as a safe anti‐diabetic agent and to have a potential for the control of diabetes.Inspec keywords: nanoparticles, transmission electron microscopy, cellular biophysics, sugar, nanomedicine, nanofabrication, zinc compounds, molecular biophysics, biochemistry, tumours, enzymes, biomedical materials, biological organs, blood, diseases, patient treatment, II‐VI semiconductors, wide band gap semiconductors, scanning electron microscopy, sol‐gel processing, semiconductor growthOther keywords: molecular mechanisms, histopathological mechanisms, zinc oxide nanoparticles, experimental diabetic rats, hypoglycaemic effect, antioxidant effect, control group, diabetic group, CD4+, CD8+ T cells, glucose transporter type‐4, control rats, GLUT‐4 expression, streptozotocin‐induced diabetic rats, biochemical mechanisms, safe antidiabetic agent, inflammation response, sol‐gel method, transmission electron microscopy, scanning electron microscopy, SEM, TEM, superoxide dismutase, glutathione peroxidase, insulin levels, haemoglobin A1c, differentiation 4+ T cells, tumour necrosis factor, interleukin‐6, blood glucose control, pancreas functions, glycaemic status, therapeutic effect, pancreatic tissues, Langerhans islets, insulin‐secreting granules, ZnO  相似文献   

16.
There is potential that the pathological effects of oxidative stress (OS) associated diseases such as diabetes could be ameliorated with antioxidants, but this will require a clearer understanding of the pathway(s) by which proteins are damaged by OS. This study reports the development and use of methods that assess the efficacy of dietary antioxidant supplementation at a mechanistic level. Data reported here evaluate the impact of green tea supplementation on oxidative stress induced post-translational modifications (OSi-PTMs) in plasma proteins of Zucker diabetic fatty (ZDF) rats. The mechanism of antioxidant protection was examined through both the type and amount of OSi-PTMs using mass spectrometry based identification and quantification. Carbonylated proteins in freshly drawn blood samples were derivatized with biotin hydrazide. Proteins thus biotinylated were selected from plasma samples of green tea fed diabetic rats and control animals by avidin affinity chromatography, further fractionated by reversed phase chromatography (RPC); fractions from the RPC column were tryptic digested, and the tryptic digest was fractionated by RPC before being identified by tandem mass spectrometry (MS/MS). Relative quantification of peptides bearing carbonylation sites was achieved for the first time by RPC-MS/MS using selective reaction monitoring (SRM). Seventeen carbonylated peptides were detected and quantified in both control and treated plasma. The relative concentration of eight was dramatically different between control and green tea treated animals. Seven of the OSi-PTM bearing peptides had dropped dramatically in concentration with treatment while one increased, indicating differential regulation of carbonylation by antioxidants. Green tea antioxidants were found to reduce carbonylation of proteins by lipid peroxidation end products most, followed by advanced glycation end products to a slightly lower extent. Direct oxidation of proteins by reactive oxygen species (ROS) was protected the least by green tea.  相似文献   

17.
The importance of the stress path on pre-peak (micro-) damage in rock material is addressed. Cracks, induced by macro-compressive stresses and macro-tensile stress fields are studied systematically on thin slices of crinoidal limestone samples. The effect of the sequence of macro-compressive and tensile stress fields, on the presence of the cracks is quantified. Firstly, samples damaged by compressive stresses only or tensile stresses only are studied. Hereafter, as a first case, a sample damaged firstly by compressive stresses and secondly by tensile stresses is studied. As a second case, samples damaged firstly by a tensile stress field, followed by compressive stresses are studied and compared to the first case. In the discussion, also the recorded cumulative acoustic emission energy and the clustering of acoustic emission events are used. The differences of both cases are highlighted: in the second case, more damage is observed than in the first case.  相似文献   

18.
The main emphasis herein is on the eco‐friendly synthesis and assessment of the antimicrobial potential of silver nanoparticles (AgNPs) and a cytotoxicity study. Silver nanoparticles were synthesised by an extracellular method using bacterial supernatant. Biosynthesised silver nanoparticles were characterised by UV‐vis spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential analysis. The synthesised silver nanoparticles exhibited a characteristic peak at 420 nm. TEM analysis depicted the spherical shape and approximately 20 nm size of nanoparticles. Silver nanoparticles carry a charge of −33.75 mV, which confirms their stability. Biogenic polyvinyl pyrrolidone‐coated AgNPs exhibited significant antimicrobial effects against all opportunistic pathogens (Gram‐positive and Gram‐negative bacteria, and fungi). Silver nanoparticles equally affect the growth of both Gram‐positive and Gram‐negative bacteria, with a maximum inhibition zone observed at 22 mm and a minimum at 13 mm against Pseudomonas aeruginosa and Fusarium graminearum, respectively. The minimum inhibitory concentration (MIC) of AgNPs against P. aeruginosa and Staphylococcus aureus was recorded at between 15 and 20 μg/ml. Synthesised nanoparticles exhibited a significant synergistic effect in combination with conventional antibiotics. Cytotoxicity estimates using C2C12 skeletal muscle cell line via 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) test and lactate dehydrogenase assay were directly related to the concentration of AgNPs and length of exposure. On the basis of the MTT test, the IC50 of AgNPs for the C2C12 cell line was approximately 5.45 μg/ml concentration after 4 h exposure.  相似文献   

19.
Incorporation of nanoparticles into a number of manufacturing products raised the concern of environmental release via deliberate or accidental routes. Here, experiments were performed to examine the effect of copper oxide nanoparticles (CuO NPs), and polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG) impregnated CuO NPs on seed germination and growth of Trigonella foenum‐graecum L. as well as on callus induction through tissue culture technique. Seed germination frequency, length, and weight parameters did not inhibit at higher extent by application of NPs; however, copper acetate, PVP, and PEG significantly decreased the values of all parameters. In all the cases, negative effects were observed concentration‐dependent. PVP and PEG impregnated CuO were found less toxic for calli fresh and dry weight induced from leaf and stem explants. The 2, 2‐diphenyl‐1‐picrylhydrazyl reagent‐free radical scavenging activity, total antioxidative potential, and total reducing power potential along with total flavonoid and phenolic contents are found elevated in root when compared with shoot. Furthermore, impregnation of PVP and PEG on CuO NPs increases the oxidative response. The results conclude that impregnation of organic molecules on nanoparticles does not reduce the toxicity though can be exploited for enhanced production of secondary metabolites for medicinal purposes.Inspec keywords: botany, copper compounds, nanoparticles, toxicology, polymers, biochemistry, nanomedicine, biological tissues, free radical reactionsOther keywords: PVP‐PEG, physiological characteristics, biochemical characteristics, Trigonella foenum‐graecum L, copper oxide nanoparticles, polyvinyl pyrrolidone, polyethylene glycol, callus induction, tissue culture technique, seed germination frequency, weight parameters, copper acetate, leaf explants, stem explants, 2,2‐diphenyl‐1‐picrylhydrazyl reagent‐free radical scavenging activity, antioxidative potential, reducing power potential, flavonoid, phenolic contents, root, shoot, oxidative response, organic molecules, toxicity, secondary metabolites, CuO  相似文献   

20.
The production of different size and shape silver nanoparticles (AgNPs) has increased considerably in recent years due to several commercial and biological applications. Here, rod‐shaped AgNPs (SNRs) were prepared using the microwave‐assisted method and characterised by ultraviolet–visible spectroscopy, and transmission electron microscopy analysis. The present study aims to investigate the cyto–genotoxic effect of various concentrations (5, 10, and 15 µM) of SNRs using Allium cepa model. As a result, concentration‐dependent cyto–genotoxic effect of SNRs was observed through a decrease in the mitotic index, and an increase in the chromosomal aberrations such as chromosome break, disturbed metaphase, and anaphase bridge. To check the impact of Ag+ ions, 15 µM silver nitrate (AgNO3) was prepared and tested in all the assays. Furthermore, cell viability and different reactive oxygen species assays were performed to test the cytotoxicity evaluation of SNRs. The authors found that in all the tested assays, SNRs at high concentrations (15 µM) and AgNO3 (15 µM) were observed to cause maximal damage to the roots. Therefore, the current study implies that the cytotoxicity and genotoxicity of SNRs were dependent on the concentration of SNRs.Inspec keywords: ultraviolet spectra, biomedical materials, silver, cellular biophysics, nanorods, toxicology, visible spectra, nanoparticles, nanofabrication, transmission electron microscopy, nanomedicine, aberrations, microwave materials processingOther keywords: biological applications, rod‐shaped AgNPs, microwave‐assisted method, ultraviolet‐visible spectroscopy, transmission electron microscopy, chromosomal aberrations, chromosome break, silver nitrate, reactive oxygen species assays, cytotoxicity, genotoxicity, silver nanorods, oxidative stress, shape silver nanoparticles, concentration‐dependent cyto‐genotoxic effect, Allium cepa model, mitotic index, disturbed metaphase, anaphase bridge, cell viability, cytotoxicity evaluation, Ag  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号