首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dopamine (DA) is an important neurotransmitter for multiple brain functions, and dysfunctions of the dopaminergic system are implicated in neurological and neuropsychiatric disorders. Although the dopaminergic system has been studied at multiple levels, an integrated and efficient computational model that bridges from molecular to neuronal circuit level is still lacking. In this study, the authors aim to develop a realistic yet efficient computational model of a dopaminergic pre‐synaptic terminal. They first systematically perturb the variables/substrates of an established computational model of DA synthesis, release and uptake, and based on their relative dynamical timescales and steady‐state changes, approximate and reduce the model into two versions: one for simulating hourly timescale, and another for millisecond timescale. They show that the original and reduced models exhibit rather similar steady and perturbed states, whereas the reduced models are more computationally efficient and illuminate the underlying key mechanisms. They then incorporate the reduced fast model into a spiking neuronal model that can realistically simulate the spiking behaviour of dopaminergic neurons. In addition, they successfully include autoreceptor‐mediated inhibitory current explicitly in the neuronal model. This integrated computational model provides the first step toward an efficient computational platform for realistic multiscale simulation of dopaminergic systems in in silico neuropharmacology.Inspec keywords: neurophysiology, organic compounds, brain, medical disordersOther keywords: integrated dopaminergic neuronal model, reduced intracellular processes, inhibitory autoreceptors, neurotransmitter, multiple brain functions, dysfunctions, neurological disorders, neuropsychiatric disorders, computational model, molecular level, neuronal‐circuit level, dopaminergic presynaptic terminal, relative dynamical timescales, steady perturbed states, reduced fast model, spiking neuronal model, autoreceptor‐mediated inhibitory current, integrated computational model, efficient computational platform, realistic multiscale simulation, in silico neuropharmacology  相似文献   

2.
Research dealing with early diagnosis and efficient treatment in colon cancer to improve patient''s survival is still under investigation. Chemotherapeutic agent result in high systemic toxicity due to their non‐specific actions on DNA repair and/or cell replication. Traditional medicine such as Lycopodium clavatum (LC) has been claimed to have therapeutic potentials against cancer. The present study focuses on targeted drug delivery of cationic liposomal nanoformulated LC (CL‐LC) in colon cancer cells (HCT15) and comparing the efficacy with an anti‐colon cancer drug, 7‐ethyl‐10‐hydroxy‐camptothecin (SN38) along with its nanoformulated form (CL‐SN38). The colloidal suspension of LC was made using thin film hydration method. The drugs were characterised using ultraviolet, dynamic light scattering, scanning electron microscopy, energy, dispersive X‐ray spectroscopy. In vitro drug release showed kinetics of 49 and 89% of SN38 and LC, whereas CL‐SN38 and CL‐LC showed 73 and 74% of sustained drug release, respectively. Studies on morphological changes, cell viability, cytotoxicity, apoptosis, cancer‐associated gene expression analysis of Bcl‐2, Bax, p53 by real‐time polymerase chain reaction and western blot analysis of Bad and p53 protein were performed. Nanoformulated LC significantly inhibited growth and increased the apoptosis of colon cancer cells indicating its potential anti‐cancer activity against colon cancer cells.Inspec keywords: cancer, biological organs, cellular biophysics, drug delivery systems, drugs, nanomedicine, genetics, DNA, molecular biophysics, biochemistry, lipid bilayers, toxicology, suspensions, colloids, light scattering, X‐ray chemical analysis, solvation, enzymes, nanostructured materialsOther keywords: energy dispersive X‐ray spectroscopy, in vitro drug release, morphological changes, cell viability, cytotoxicity, apoptosis, cancer‐associated gene expression analysis, Bcl‐2, Bax, real‐time polymerase chain reaction, western blot analysis, Bad protein, p53 protein, scanning electron microscopy, dynamic light scattering, ultraviolet scattering, thin film hydration method, colloidal suspension, nanoformulated form CL‐SN38, 7‐ethyl‐10‐hydroxy‐camptothecin, anticolon cancer drug, colon cancer cells HCT15, cationic liposomal nanoformulated LC, targeted drug delivery, therapeutic potentials, Lycopodium clavatum, traditional medicines, cell replication, DNA repair, nonspecific actions, high systemic toxicity, chemotherapeutic agents, patient survival, colon cancer treatment, colon cancer diagnosis, CL‐LC, potential anticancer activity  相似文献   

3.
The immune system is an inherent protection system in vertebrate animals including human beings that exhibit properties such as self‐organisation, self‐adaptation, learning, and recognition. It interacts with the other allied systems such as the gut and lymph nodes. There is a need for immune system modelling to know about its complex internal mechanism, to understand how it maintains the homoeostasis, and how it interacts with the other systems. There are two types of modelling techniques used for the simulation of features of the immune system: equation‐based modelling (EBM) and agent‐based modelling. Owing to certain shortcomings of the EBM, agent‐based modelling techniques are being widely used. This technique provides various predictions for disease causes and treatments; it also helps in hypothesis verification. This study presents a review of agent‐based modelling of the immune system and its interactions with the gut and lymph nodes. The authors also review the modelling of immune system interactions during tuberculosis and cancer. In addition, they also outline the future research directions for the immune system simulation through agent‐based techniques such as the effects of stress on the immune system, evolution of the immune system, and identification of the parameters for a healthy immune system.Inspec keywords: reviews, cancerOther keywords: review, system biology, agent‐based models, immune system, vertebrate animals, human beings, disease, gut nodes, lymph nodes, tuberculosis, cancer  相似文献   

4.
Identification of oncogenic genes from a large sample number of genomic data is a challenge. In this study, a well‐established latent factor model, Bayesian factor and regression model, are applied to predict unknown colon cancer related genes from colon adenocarcinoma genomic data. Four important latent factors were addressed by the latent factor model, focusing on characterisation of heterogeneity of expression patterns of specific oncogenic genes by using microarray data of 174 colon cancer patients. Based on the fact that variables included in the same latent factor have some common characteristics and known cancer related genes in Online Mendelian Inheritance in Man, the authors found that the four latent factors can be employed to predict unknown colon cancer related genes that were never reported in the literature. The authors validated 15 identified genes by checking their somatic mutations of the same patients from DNA sequencing data.Inspec keywords: Bayes methods, biological organs, cancer, DNA, genetics, genomics, lab‐on‐a‐chip, medical diagnostic computing, molecular biophysics, physiological models, regression analysisOther keywords: latent factor analysis, oncogenic genes, colon adenocarcinoma, genomic data, Bayesian factor, colon cancer related genes, heterogeneity, expression patterns, DNA microarray data, Online Mendelian Inheritance in Man, somatic mutations, DNA sequencing data  相似文献   

5.
6.
This paper deals with the design of robust observer based output feedback control law for the stabilisation of an uncertain nonlinear system and subsequently apply the developed method for the regulation of plasma glucose concentration in Type 1 diabetes (T1D) patients. The principal objective behind the proposed design is to deal with the issues of intra‐patient parametric variation and non‐availability of all state variables for measurement. The proposed control technique for the T1D patient model is based on the attractive ellipsoid method (AEM). The observer and controller conditions are obtained in terms of linear matrix inequality (LMI), thus allowing to compute easily both the observer and controller gains. The closed‐loop response obtained using the designed controller avoids adverse situations of hypoglycemia and post‐prandial hyperglycemia under uncertain conditions. Further to validate the robustness of the design, closed‐loop simulations of random 200 virtual T1D patients considering parameters within the considered ranges are presented. The results indicate that hypoglycemia and post‐prandial hyperglycemia are significantly reduced in the presence of bounded (±30% ) parametric variability and uncertain exogenous meal disturbance.Inspec keywords: medical control systems, observers, uncertain systems, nonlinear control systems, robust control, control system synthesis, linear matrix inequalities, feedback, sugar, closed loop systems, diseasesOther keywords: virtual T1D patients, type 1 diabetes patients, closed‐loop simulations, uncertain conditions, post‐prandial hyperglycemia, designed controller, closed‐loop response, controller gains, linear matrix inequality, controller conditions, T1D patient model, control technique, intra‐patient parametric variation, principal objective, plasma glucose concentration, uncertain nonlinear system, robust observer based output feedback control law, attractive ellipsoid method, plasma glucose regulation  相似文献   

7.
The focus of this study is on a rapid and cost‐effective approach for the synthesis of silver nanoparticles (AgNPs) using Artemisia quttensis Podlech aerial parts extract and assessment of their antioxidant, antibacterial and anticancer activities. The prepared AgNPs were determined by ultraviolet–visible spectroscopy, X‐ray diffraction, Fourier transform infra‐red spectroscopy, transmission electron microscopy, scanning electron microscopy, energy‐dispersive spectroscopy, and dynamic light scattering and zeta‐potential analysis. The AgNPs and A. quttensis extract were evaluated for their antiradical scavenging activity by 2, 2‐diphenyl, 1‐picryl hydrazyl assay and anticancer activity against colon cancer (human colorectal adenocarcinoma cell line 29) compared with normal human embryonic kidney (HEK293) cells. Also, the prepared AgNPs were studied for its antibacterial activity. The AgNPs revealed a higher antioxidant activity compared with A. quttensis extract alone. The phyto‐synthesised AgNPs and A. quttensis extract showed a dose–response cytotoxicity effect against HT29 and HEK293 cells. As evidenced by Annexin V/propidium iodide staining, the number of apoptotic HT29 cells was significantly enhanced, following treatment with AgNPs as compared with untreated cells. Besides, the antibacterial property of the AgNPs indicated a significant effect against the selected pathogenic bacteria. These present obtained results show the potential applications of phyto‐synthesised AgNPs using A. quttensis aerial parts extract.Inspec keywords: nanoparticles, silver, nanomedicine, cancer, transmission electron microscopy, ultraviolet spectroscopy, visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, electrokinetic effects, kidney, cellular biophysics, antibacterial activity, toxicology, patient treatmentOther keywords: anticancer properties, antibacterial properties, antioxidant properties, phytosynthesised Artemisia quttensis Podlech extract mediated AgNP, ultraviolet‐visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, energy‐dispersive spectroscopy, dynamic light scattering, zeta‐potential analysis, antiradical scavenging activity, 2,2‐diphenyl, 1‐picryl hydrazyl assay, anticancer activity, HT29 colon cancer, human embryonic kidney cells, HEK293 cells, A. quttensis extract, dose‐response cytotoxicity effect, Annexin V staining, apoptotic HT29 cells, pathogenic bacteria, propidium iodide staining, Ag  相似文献   

8.
N6‐methyladenosine (m6A) RNA methylation is correlated with carcinogenesis and dynamically possessed through the m6A RNA methylation regulators. This paper aimed to explore 13 m6A RNA methylation regulators'' role in gastrointestinal cancer (GIC) and determine the risk model and prognosis value of m6A RNA methylation regulators in GIC. We used several bioinformatics methods to identify the differential expression of m6A RNA methylation regulators in GIC, constructed a prognostic model, and carried out functional enrichment analysis. Eleven of 13 m6A RNA methylation regulators were differentially expressed in different clinicopathological characteristics of GIC, and m6A RNA methylation regulators were nearly associated with GIC. We constructed a risk model based on five m6A RNA methylation regulators (METTL3, FTO, YTHDF1, ZC3H13, and WTAP); the risk score is an independent prognosis biomarker. Moreover, the five m6A RNA methylation regulators can also forecast the 1‐, 3‐ and 5‐year overall survival through a nomogram. Furthermore, four hallmarks of oxidative phosphorylation, glycolysis, fatty acid metabolism, and cholesterol homoeostasis gene sets were significantly enriched in GIC. m6A RNA methylation regulators were related to the malignant clinicopathological characteristics of GIC and may be used for prognostic stratification and development of therapeutic strategies.  相似文献   

9.
DNA methylation is an epigenetic phenomenon in which methyl groups get bonded to the cytosines of the DNA molecule altering the expression of the associated genes. Cancer is linked with hypo or hyper‐methylation of specific genes as well as global changes in DNA methylation. In this study, the authors study the probability density function distribution of DNA methylation in various significant genes and across the genome in healthy and tumour samples. They propose a unique ‘average healthy methylation distribution’ based on the methylation values of several healthy samples. They then obtain the Kullback–Leibler and Jensen–Shannon distances between methylation distributions of the healthy and tumour samples and the average healthy methylation distribution. The distance measures of the healthy and tumour samples from the average healthy methylation distribution are compared and the differences in the distances are analysed as possible parameters for cancer. A classifier trained on these values was found to provide high values of sensitivity and specificity. They consider this to be a computationally efficient approach to predict tumour samples based on DNA methylation data. This technique can also be improvised to consider other differentially methylated genes significant in cancer or other epigenetic diseases.Inspec keywords: cancer, tumours, DNA, genetics, molecular biophysicsOther keywords: tumour DNA methylation distributions, kidney‐renal‐clear‐cell‐carcinoma, Kullback–Leibler distance measure, Jensen–Shannon distance measure, epigenetic phenomenon, methyl groups, cytosines, hyper‐methylation, probability density function distribution, average healthy methylation distribution  相似文献   

10.
Tea polyphenols (TPPs) comprise preventive and therapeutic potentials against cancer, cardiovascular and neurological disorders. Chemical instability of TPP which leads to low bioavailability is the major constrain to its use as therapeutic agent. The authors prepared TPP encapsulated solid lipid nanoparticles (TPP‐SLNs) to increase its stability and bioefficacy. Comparison of Fourier transformed infrared spectra of unloaded SLN, free TPP and TPP‐SLN indicated encapsulation of TPP. Sustained release of TPP from TP‐SLN was observed. TPP‐SLN showed prolonged free radical scavenging activity compared with free TPP indicating protection of TPP. TPP‐SLN showed activation of Caspases‐9 and ‐3 cascades in breast cancer cell line (Michigan cancer foundation (MCF)‐7) at in vitro conditions. Biochemical parameters were altered in Ehrlich ascetic carcinoma (EAC) cell bearing mice compared with normal (uninduced) mice which were ameliorated significantly by oral feeding of TPP‐SLN. Oral administration (pre‐ and post‐treated) of TPP‐SLN in EAC bearing mice resulted in significant increase of plasma haemoglobin, glucose, superoxide dismutase and catalase when compared with EAC bearing control mice. Other biochemical parameters (cholesterol, bilirubin, triglyceride, urea, total protein, alanine aminotransferase, alkaline phosphatase and aspertate transaminase were significantly decreased on oral administration (pre‐ and post‐treated) of TPP‐SLN in EAC bearing mice.Inspec keywords: biochemistry, nanomedicine, nanoparticles, free radicals, cancer, enzymes, patient treatmentOther keywords: positive regulation, biochemical parameters, tea polyphenol encapsulated solid lipid nanoparticles, in vitro conditions, in vivo conditions, preventive potentials, therapeutic potentials, cardiovascular disorders, neurological disorders, catalase, superoxide dismutase, glucose, plasma haemoglobin, oral feeding, EAC cell, Ehrlich ascetic carcinoma, MCF‐7, breast cancer cell line, free radical scavenging activity, encapsulation, TPP‐SLN, free TPP, unloaded SLN, Fourier transformed infrared spectra, bioefficacy, therapeutic agent, low bioavailability, chemical instability  相似文献   

11.
In this study, an eco‐friendly biosynthesis of stable gold nanoparticles (T‐GNPs) was carried out using different concentrations of tomato juice (nutraceuticals) as a reducing agent and tetrachloroauric acid as a metal precursor to explore their potential application in cancer therapeutics. The synthesis of T‐GNPs was monitored by UV‐visible absorption spectroscopy, which unveiled their formation by exhibiting the typical surface plasmon absorption maxima at 522 nm. The size of T‐GNPs was found to be 10.86 ± 0.6 nm. T‐GNPs were characterised by dynamic light scattering, zeta potential, transmission electron microscopy analysis and Fourier transform infrared spectroscopy. T‐GNPs were further investigated for their anti‐cancer activity against human lung carcinoma cell line (A 549) and human cervical cancer cell line wherein the IC50 values were found to be 0.286 and 0.200 mM, respectively. T‐GNPs inhibited the growth of cancer cells by generating ROS and inducing apoptosis. T‐GNPs were found highly effective by virtue of their size, metallic property and capping molecules. Thus, this study opens up the prospects of using nutraceutical (tomato juice) as nutratherapeutic agent (T‐GNPs) against critical diseases like lung cancer and cervical cancer.Inspec keywords: gold, nanoparticles, particle size, cancer, ultraviolet spectra, visible spectra, electrokinetic effects, transmission electron microscopy, Fourier transform infrared spectra, cellular biophysics, spectrochemical analysis, nanomedicine, nanofabricationOther keywords: tomato‐mediated synthesised gold nanoparticles, tomato juice, reducing agent, tetrachloroauric acid, cancer therapeutics, UV‐visible absorption spectroscopy, surface plasmon absorption, dynamic light scattering, zeta potential, transmission electron microscopy analysis, Fourier transform infrared spectroscopy, human lung carcinoma cell line, anticancer activity, human cervical cancer cell line, nutratherapeutic agent, lung cancer, Au  相似文献   

12.
Single‐walled carbon nanotubes (SWCNTs) are thoroughly purified and dispersed in an aqueous solution of high molecular weight poly‐L‐lysine (pLlys). Human intestinal epithelial Caco‐2/TC7 cells are incubated with the SWCNT dispersions in pLlys, and their effects on cell viability are studied by image flow cytometry. No significant changes are observed in the cell culture wells up to pLlys concentrations of 10 μg ml−1. However, high mortality is detected at pLlys concentrations of 100 μg ml−1. The presence of oxygen‐free SWCNTs does not modify the effects of pLlys on cell cultures at any of the tested concentrations (≤1 μg ml−1). In addition, SWCNTs having an 8 wt.% of surface oxygen are tested with identical results. Thus, purified SWCNTs, even bearing oxygen functional groups, act as inert particles in the cell culture medium. This result supports the applicability of SWCNTs as carriers in pharmacological formulations against digestive tract diseases.Inspec keywords: single‐wall carbon nanotubes, cellular biophysics, molecular weight, filled polymers, biochemistry, cancer, colloidsOther keywords: surface oxygen, mortality, cell culture wells, image flow cytometry, human intestinal epithelial Caco‐2/TC7 cells, molecular weight, aqueous solution, single walled carbon nanotubes, colon cancer cells, carbon nanotube‐polylysine colloids, toxicity  相似文献   

13.
In the present study, Ag/AgCl‐NPs were biosynthesised using Hypnea musciformis seaweed extract; NPs synthesis was confirmed by a change of colour and observation of a razor‐sharp peak at 424 nm by UV–visible spectroscopy. Synthesised nanoparticles were characterised by transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray powder diffraction and Fourier transform infrared spectroscopy. Bacterial cell growth inhibition proves that the Ag/AgCl‐NPs have strong antibacterial activity and cell morphological alteration was observed in treated bacterial cells using propidium iodide (PI). Ag/AgCl‐NPs inhibited Ehrlich ascites carcinoma (EAC) cells, colorectal cancer (HCT‐116) and breast cancer (MCF‐7) cell line in vitro with the IC50 values of 40.45, 24.08 and 36.95 μg/ml, respectively. Initiation of apoptosis in HCT‐116 and MCF‐7 cells was confirmed using PI, FITC‐annexin V and Hoechst 33342 dye. No reaction oxygen species generation was observed in both treated and untreated cell lines. A significant increase of ATG‐5 gene expression indicates the possibility of autophagy cell death besides apoptosis in MCF‐7 cells. The initiation of apoptosis in EAC cells was confirmed by observing caspase‐3 protein expression. Ag/AgCl‐NPs inhibited 22.83% and 51% of the EAC cell growth in vivo in mice when administered 1.5 and 3.0 mg/kg/day (i.p.), respectively, for 5 consequent days.  相似文献   

14.
In the present era, enormous factors contribute to causing cancer. So cancer classification cannot rely only on doctor''s thoughts. As a result, intelligent algorithms concerning doctor''s help are inevitable. Therefore, the authors are motivated to suggest a novel algorithm to classify three cancer datasets; colon, ALL‐AML, and leukaemia cancers. Their proposed algorithm is based on the deep neural network and emotional learning process. First of all, by applying the principal component analysis, they had a feature reduction. Then, they used deep neural as a feature extraction. Then, they implemented different classifiers; multi‐layer perceptron, support vector machine (SVM), decision tree, and Gaussian mixture model. In the end, because in the real world, especially when working on systems biology, unpredictable events, and uncertainties are undeniable, the robustness of their model against uncertainties is important. So they added Gaussian noise to the input features of the first encoder in each dataset, then, they applied the stacked denoising method. Experimental results disclosed that, generally, using emotional learning increased the accuracy. In addition, the highest accuracy was gained by SVM, 91.66, 92.27, and 96.56% for colon, ALL‐AML, and leukaemia, respectively. However, GMM led to the lowest accuracy. The best accuracy gained by GMM was 60%.Inspec keywords: cancer, learning (artificial intelligence), principal component analysis, multilayer perceptrons, feature extraction, support vector machines, pattern classification, Gaussian processes, decision trees, Gaussian noise, medical computingOther keywords: colon cancer, Gaussian noise, stacked denoising method, SVM, support vector machine, emotional learning process, cancer datasets, intelligent algorithms, cancer classification, ALL‐AML, input features, Gaussian mixture model, decision tree, multilayer perceptron, feature extraction, feature reduction, principal component analysis, deep neural network, leukaemia cancers  相似文献   

15.
The emergence of the huge number of multi‐drug resistant (MDR) bacteria requires an alternative to the drugs. Silver nanoparticles (AgNPs) are a strong candidate for this due to their bactericidal properties, which can be better concluded by understanding their morphology and chemistry. The study hypothesised that AgNPs synthesised using leaves of Syzygium cumini can be used to treat locally emerging MDRs forming biofilms on indwelling medical devices. Synthesised particles were characterised by methods like UV–visible spectroscopy, X‐ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and Zetasizer. Fourier transform infrared spectroscopy, and high‐performance liquid chromatography were used to predict phytochemicals present in the leaves. The shape of particles is revealed to be relatively spherical, with average size to be around 10–100 nm. Phenolic compounds are attributed to the formation of nanoparticles, stability analysis shows particles to be stable, and zeta potential determined the surface charge to be −20.1 mV. Biosynthesised particles are found to possess efficient antibacterial activity MDR bacteria developing biofilms in medical devices; hence, it is concluded that S. cumini based NPs can be used to develop a layer on implant‐related medical devices. Toxicity evaluation against A594 cancer cells portrays AgNPs to be potential tumour reduction agents in a concentration‐dependent manner.Inspec keywords: silver, visible spectra, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, chromatography, electrokinetic effects, cancer, biomedical materials, reduction (chemical), cellular biophysics, nanofabrication, nanoparticles, antibacterial activity, particle size, drugs, toxicology, nanomedicine, ultraviolet spectra, microorganisms, tumours, Fourier transform infrared spectraOther keywords: Syzygium cumini, biofilms, indwelling medical devices, UV‐visible spectroscopy, X‐ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, high‐performance liquid chromatography, biosynthesised particles, implant‐related medical devices, biosynthesised silver nanoparticles, multidrug resistant biofilm‐forming pathogens, multidrug resistant bacteria, MDR, bactericidal properties, morphology, scanning electron microscopy, s. cumini based NP, A594 cancer cells, tumour reduction, Ag  相似文献   

16.
In this study, gold nanoshell (GNS) were synthesised utilising the Halas method. The obtained nanoparticles (NPs) were characterised by Fourier‐transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis spectroscopy and dynamic light scattering. FTIR spectra demonstrated the successful functionalisation of silica NP with 3‐aminopropyl trimethoxysilane. SEM and TEM images showed the morphology and diameter of the synthesised silica NPs (137 ± 26 nm) and GNS. UV–Vis spectrum illustrated the maximum absorbance of the resultant GNS and their average hydrodynamic diameter was 159 nm. For in vitro study, HCT‐116 cells were exposed to gold nanoshells and intense pulsed light in different experiment groups. The results showed that exposing the cells to nanoshells and 30 s irradiation would efficiently decrease the viability percentage of the cells to about 30% compared with the control. A continued exposure of 4 min decreased the viability of the cancer cells to 20%. The results demonstrated that photothermal therapy would be promising in treatment of colon cancer cells utilising gold nanoshells.Inspec keywords: gold, silicon compounds, nanomedicine, plasmonics, radiation therapy, bio‐optics, cancer, cellular biophysics, nanoparticles, Fourier transform spectra, infrared spectra, scanning electron microscopy, transmission electron microscopy, ultraviolet spectra, visible spectraOther keywords: plasmonic photothermal therapy, colon cancer cells, gold‐silica nanoshells, GNS, Halas method, Fourier transform infrared spectroscopy, FTIR, scanning electron microscopy, SEM, transmission electron microscopy, TEM, UV‐vis spectroscopy, dynamic light scattering, FTIR spectra, 3‐aminopropyl trimethoxysilane, morphology, in vitro study, HCT‐116 cells, cell viability, nanoparticles, time 30 s, time 4 min, Au  相似文献   

17.
18.
In the previous report, the authors showed the gold nanoparticle (GNP) functionalised multiple N ‐methylated fragments of the residue (32–37) of beta (β)‐amyloid protein (1–42), CGGIGLMVG and CGGGGGIGLMVG toward disruption of β ‐amyloid (1–42), the predominant component of senile plaques. Herein the in vitro antimicrobial activities of both normal and multiple N ‐methylated sequences of CGGIGLMVG and CGGGGGIGLMVG were screened and it was found that all the eight sequences including four (non‐functionalised with GNP) to possess activity against both Gram‐positive [Staphylococcus aureus (ATCC 43300) and Enterococcus faecalis (ATCC 5129)] and Gram‐negative [Escherichia coli (ATCC 35218), Pseudomonas aeruginosa (ATCC 27853) and Klebsiella pneumoniae (ATCC 700603)] bacteria. Among them, N ‐methylated sequences CGGIGLMVG and CGGGGGIGLMVG shown remarkable activity against Gram‐positive bacteria.Inspec keywords: microorganisms, gold, nanoparticles, nanomedicineOther keywords: GNP functionalisation, N‐methylation, β‐amyloid residue, Gram‐positive bacterium, gold nanoparticle functionalised multiple N‐methylated fragments, beta β‐amyloid protein, CGGGGGIGLMVG, Staphylococcus aureus, ATCC 43300, Enterococcus faecalis, ATCC 5129, Escherichia coli, ATCC 35218, Pseudomonas aeruginosa, ATCC 27853, Klebsiella pneumoniae, ATCC 700603, Au  相似文献   

19.
This study was to identify important circRNA–miRNA–mRNA (ceRNAs) regulatory mechanisms in hepatocellular carcinoma (HCC). The circRNA dataset GSE97332 and miRNA dataset GSE57555 were used for analyses. Functional enrichment analysis for miRNA and target gene was conducted using cluster Profiler. Survival analysis was conducted through R package Survival. The ceRNAs and drug–gene interaction networks were constructed. The ceRNAs network contained five miRNAs including hsa‐miR‐25‐3p, hsa‐miR‐3692‐5p, hsa‐miR‐4270, hsa‐miR‐331‐3p, and hsa‐miR‐125a‐3p. Among the network, hsa‐miR‐25‐3p targeted the most genes, hsa‐miR‐3692‐5p and hsa‐miR‐4270 were targeted by more circRNAs than other miRNAs, hsa‐circ‐0034326 and hsa‐circ‐0011950 interacted with three miRNAs. Furthermore, target genes, including NRAS, ITGA5, SLC7A1, SEC14L2, SLC12A5, and SMAD2 were obtained in drug–gene interaction network. Survival analysis showed NRAS, ITGA5, SLC7A1, SEC14L2, SLC12A5, and SMAD2 were significantly associated with prognosis of HCC. NRAS, ITGA5, and SMAD2 were significantly enriched in proteoglycans in cancer. Moreover, hsa‐circ‐0034326 and hsa‐circ‐0011950 might function as ceRNAs to play key roles in HCC. Furthermore, miR‐25‐3p, miR‐3692‐5p, and miR‐4270 might be significant for HCC development. NRAS, ITGA5, SEC14L2, SLC12A5, and SMAD2 might be prognostic factors for HCC patients via proteoglycans in cancer pathway. Taken together, the findings will provide novel insight into pathogenesis, selection of therapeutic targets and prognostic factors for HCC.Inspec keywords: cancer, cellular biophysics, patient diagnosis, bioinformatics, tumours, biochemistry, molecular biophysics, genetics, drugs, RNAOther keywords: ITGA5, SMAD2, hsa‐circ‐0034326, SEC14L2, SLC12A5, target gene, survival analysis, drug–gene interaction network, miRNAs, hsa‐miR‐25‐3p, hsa‐miR‐3692‐5p, hsa‐miR‐4270, hsa‐miR‐331‐3p, hsa‐miR‐125a‐3p, hsa‐circ‐0011950, SLC7A1, pathogenesis, therapeutic targets, prognostic factors, circRNA‐miRNA‐mRNA regulatory network, current 125.0 A  相似文献   

20.
The main goal of this study was to synthesise and characterise different formulations based on alginate and alginate/chitosan microspheres containing nanoselenium (nano‐Se) for controlled delivery applications. Nanosize elemental selenium was produced by using probiotic yogurt bacteria (Lactobacillus casei) in a fermentation procedure. The structural and morphological characterisation of the microspheres was performed by Fourier transform infrared (FTIR), X‐ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. FTIR and XRD pattern indicated that was an effective cross‐linking of selenium nanoparticles within the polymeric matrix in both cases. The SEM images reveal that selenium nanoparticles are mainly exposed on the surface of alginate, in contrast to porous structure of alginate/chitosan/nano‐Se, interconnected in a regular network. This architecture type has a considerable importance in the delivery process, as demonstrated by differential pulse voltammetry. Selenium release from both matrices is pH sensitive. Moreover, chitosan blended with alginate minimise the release of encapsulated selenium, in simulated gastric fluid, and prolong the duration of release in intestinal fluid. The overall effect is the enhancement of total percentage release concomitant with the longer duration of action. The authors’ formulation based on alginate/chitosan is a convenient matrix to be used for selenium delivery in duodenum, caecum and colon.Inspec keywords: organic‐inorganic hybrid materials, nanocomposites, blending, filled polymers, nanoparticles, nanofabrication, nanomedicine, biomedical materials, drug delivery systems, microorganisms, biological organs, selenium, polymer blends, fermentation, scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectra, surface morphology, nanoporous materials, porosity, pH, voltammetry (chemical analysis), encapsulationOther keywords: structural characterisation, hybrid microspheres entrapping nanoselenium, green synthesis, alginate‐chitosan microspheres, controlled delivery applications, nanosize elemental selenium, probiotic yogurt bacteria, Lactobacillus casei, fermentation, scanning electron microscopy, morphological characterisation, SEM, Fourier transform infrared spectra, FTIR, XRD, X‐ray diffraction, selenium nanoparticles, polymeric matrix, porous structure, differential pulse voltammetry, pH, blending, encapsulated selenium, simulated gastric fluid, intestinal fluid, total percentage release concomitant, duodenum, caecum, colon, Se  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号