首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Silicate matrix composites are potential candidates for high-temperature applications. In the present investigation, the effect of metallic (Cu) and non-metallic (SiC particulates, platelets, short fibres and whiskers) additions on the rheological behaviour of borosilicate matrix composites has been evaluated. The hot-pressed composites were tested both in compression and tension in the temperature range of 625–725°C. SiC reinforced composites tested in compression exhibited varying degree of strengthening and strain rate sensitivity depending on the volume fraction and morphology of reinforcements. The degree of strengthening and strain rate sensitivity depends on the volume fraction and morphology of reinforcements. Strengthening effect increased with the volume fraction and aspect ratio of reinforcements. The flow behaviour of composites changed from Newtonian to non-Newtonian with strain rate sensitivity index value changing from unity to 0.48. A similar trend was seen in the rate sensitivity of copper composites. However, copper additions decreased the strength of the composites at lower temperatures because of the softer copper phase. Pre-oxidation of copper particles had certain strengthening effect on the composite. The apparent viscosity of SiC reinforced composites increased with volume fraction and aspect ratio of reinforcements. However, in particulate composites, the viscosity found to increase with particle size. The mechanical/hydrodynamic interactions among the particulates appeared to be responsible for such a behaviour. With increasing strain rate, the viscosity decreased progressively confirming the shear thinning of the composites. The tensile ductility of the composites with 40 vol% reinforcements was evaluated at 700°C. While 400% elongation was observed in SiC particulate, platelet and copper composites, in short fibre/whisker composites, the tensile elongation values were only 150%. Further, the elongation of SiC platelet and copper composites improved by decreasing temperature and volume fraction of reinforcements, and also elongation values >500% were recorded. The tensile ductility of borosilicate composites was limited by onset and growth of cavities nucleated at the reinforcement/matrix interfaces.  相似文献   

2.
Strengthening behavior of composite containing discontinuous reinforcement is strongly related with load transfer at the reinforcement–matrix interface. We selected multi-walled carbon nanotube (MWCNT) and few-layer graphene (FLG) as a reinforcing agent. By varying a volume fraction of the reinforcement, aluminum (Al) matrix composites were produced by a powder metallurgy method. Uniform dispersion and uniaxial alignment of MWCNT and FLG in the Al matrix are evidenced by high-resolution transmission electron microscope analysis. Although the reinforcements have a similar molecular structure, FLG has a 12.8 times larger specific surface area per volume more than MWCNT due to geometric difference. Therefore an increment of a yield stress versus a reinforcement volume fraction for FLG shows 3.5 times higher than that of MWCNT Consequently, for both reinforcements, the composite strength proportionally increases with the specific surface area on the composite, and the composites containing 0.7 vol% FLG exhibit 440 MPa of tensile strength.  相似文献   

3.
This article presents the effects of fiber volume fraction on the existence of a transition region in unidirectional kenaf/epoxy composites. The composites were made from hand Lay-up techniques, with three formulations of fiber volume fraction employed: 0% (neat), 15% and 45%. The results showed that tensile properties such as tensile strength and modulus of elasticity increased as the fiber volume increased. The stress-strain curves showed that the kenaf/epoxy composites exhibited bi-linear responses with reductions in the modulus of elasticity. Surface morphology aided by a scanning electron microscope (SEM) revealed that the reduction in the modulus of elasticity was due to matrix cracking.  相似文献   

4.
The mechanical performance of short randomly oriented banana and sisal hybrid fiber reinforced polyester composites was investigated with reference to the relative volume fraction of the two fibers at a constant total fiber loading of 0.40 volume fraction (Vf), keeping banana as the skin material and sisal as the core material. A positive hybrid effect is observed in the flexural strength and flexural modulus of the hybrid composites. The tensile strength of the composites showed a positive hybrid effect when the relative volume fraction of the two fibers was varied, and maximum tensile strength was found to be in the hybrid composite having a ratio of banana and sisal 4 : 1. The impact strength of the composites was increased with increasing volume fraction of sisal. However, a negative hybrid effect is observed when the impact strength of the composites is considered. Keeping the relative volume fraction of the two fibers constant, that is, banana : sisal = 0.32 : 0.08 (i.e., 4 : 1), the fiber loading was optimized and different layering patterns were investigated. The impact strength of the composites was increased with fiber loading. Tensile and flexural properties were found to be better at 0.40 Vf. In the case of different layering patterns, the highest flexural strength was observed for the bilayer composites. Compared to other composites, the tensile properties were slightly higher for the composite having banana as the skin material and sisal as the core material. Scanning electron micrographs of the tensile and impact fracture surfaces of the hybrid composites having volume fraction 0.20 and 0.40 Vf were studied. The experimental tensile strength and tensile modulus of hybrid composites were compared with those of theoretical predictions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1699–1709, 2005  相似文献   

5.
制备工艺对亚麻增强聚丙烯复合材料拉伸性能的影响   总被引:4,自引:0,他引:4  
以亚麻纤维为增强体,与聚丙烯(PP)长丝进行丝束级共混,形成PP包覆亚麻的纱线结构,利用机织工艺织成二维机织布,作为复合材料的预制件。采用层合热压方法制备PP/亚麻复合材料板材。通过对板材拉伸性能测试及扫描电镜(SEM)拉伸断口形貌分析,研究了不同纤维体积分数、织造密度及织造组织等因素对复合材料拉伸性能的影响。结果表明,在选取最优热压温度与压力的条件下,纤维体积分数为50%的板材性能最优;经向密度相同时,拉伸性能随着纬向密度的增加而提高;经、纬向密度均相同时,斜纹3/1组织的板材性能最优,纬向最大拉伸强度可达92.42 MPa。  相似文献   

6.
牛军锋 《塑料科技》2012,40(10):55-57
分别以玻璃纤维(GF)与碳纤维(CF)作为增强体制备了聚苯硫醚(PPS)纤维增强复合材料。研究了GF/PPS和CF/PPS复合材料的摩擦磨损性能,以及不同体积分数的纤维增强体、不同载荷与滑动速度对复合材料的摩擦磨损性能的影响。结果表明:GF与CF的引入有效地提高了复合材料的摩擦磨损性能;随纤维体积分数的增加复合材料的摩擦系数逐渐增加,随载荷的增加复合材料的摩擦系数逐渐降低,但磨损率增大。  相似文献   

7.
Mike J. Clifford  Tong Wan 《Polymer》2010,51(2):535-2946
In this paper, the effect of two different reinforcements: clay at the nanoscale and glass fibres at the micro-scale, on the mechanical properties of PA/clay and GF/PA/clay are studied. The Halpin-Tsai model is used to predict the modulus of PA/Clay and GF/PA/Clay, both of which are influenced by two factors: reinforcement shape and volume fraction. The relationships between the modulus and reinforcement shape and volume fraction are discussed. Tensile modulus, measured in tensile tests is used to fit the Halpin-Tsai models. The results demonstrate a synergy between the reinforcements at the two different scales.  相似文献   

8.
本文采用细观力学模型和有限元法研究短纤维增强SiC/Al复合材料在高温下的粘弹性行为,着重讨论了纤维体分比和长径比对复合材料总体蠕变性能的影响。结果表明,随着纤维体分比和长径比的增加,纤维能显著抑制复合材料沿轴向蠕变行为。  相似文献   

9.
The dynamic elastic properties are important characteristics of composite materials. They control the vibrational behaviour of composite structures and are also an ideal tool for monitoring of the development of CFRCs’ mechanical properties during their processing (heat treatment, densification). The present studies have been performed to explore relations between the dynamic tensile and shear moduli and some structural features (viz., fibre fraction, fibre type, porosity, weave pattern of woven reinforcement) of various unidirectional or bi-directional fibre reinforced carbon/carbon composites, made out of PAN- or pitch-based fibres as reinforcements and phenolic resin or coal tar pitch as matrix precursors. The dynamic tensile and in-plane shear moduli were determined from resonant frequencies of a beam with free ends. The longitudinal dynamic Young’s modulus of unidirectional CFRC composites – besides its dependence on the original fibre modulus and fibre volume contents – also reflects changes induced in matrix and fibres by heat treatment. The in-plane shear modulus does not depend on the fibre type but there exists its distinct tendency to increase with increasing fibre fraction. For bi-directionally reinforced composites, the longitudinal tensile modulus is more sensitive to the fabric weave pattern than to the fibre type. Tensile modulus of diagonally cut specimens and in-plane shear modulus of longitudinally cut ones are mutually correlated and, therefore, simultaneously controlled by densification steps and graphitisation heat treatment.  相似文献   

10.
Vegetable fibers are being used as reinforcements in polymeric matrices with a wide variety of applications. Among these fibers, sisal is of particular interest due to the high impact strength and moderate tensile and flexural properties of its derivated composites. Because of its low cost and affinity, a phenol–formaldehyde resin, resol, has been selected as the matrix to obtain resol–sisal composites. The influence of fiber length and volume fraction on flexural properties has been studied. An optimum for the fiber length as well as for the fiber volume fraction was found. The improvement of the properties occurred up to a length of about 23 mm. The use of longer fibers lead to reduced properties because they tended to curl and bend during processing. Besides, actual composite densities were lower than theoretical ones mainly due to the presence of voids. This undesirable porosity produced a reduction in flexural properties at high fiber contents. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2714–2722, 2003  相似文献   

11.
Blends of maleated polypropylene (MAPP) with high contents of waste rubber powder, namely ground tire rubber and waste ethylene propylene diene monomer (EPDM) powder, were used as impact modifiers for polypropylene (PP) based composites with different reinforcements (hemp, talc, and milled glass fiber). Adding reinforcements led to increase in modulus (tensile, flexural, and torsion moduli) of PP, while its impact strength decreased noticeably. Impact modification of PP‐based composites was successfully performed via inclusion of MAPP/waste rubber compounds, especially compounds containing waste EPDM powder. Inclusion of such impact modifiers increased impact strength of composites over 80%. The effects of impact modification were more significant for hemp‐ and glass‐filled composites compared to composites containing talc. However, slight decrease in tensile, flexural, and torsion moduli (up to 30%) of the composites was also observed after inclusion of impact modifiers. POLYM. COMPOS., 35:2280–2289, 2014. © 2014 Society of Plastics Engineers  相似文献   

12.
《Polymer Composites》2017,38(2):381-388
This article presents an experimental and numerical study on mechanical behavior of sepiolite reinforced rubber sealing composites (SRRC), which are subjected to the transverse tensile loads. A finite element model of composites with fibers in square and random distribution is adopted for the numerical study. The representative volume elements with different fiber volume fraction are established and analyzed. A successive remeshing strategy is employed to achieve the large deformation of SRRC. The results show that the tensile strength and breaking elongation of SRRC can be improved by addition of sepiolite fiber, and they reach a maximum at 42% fiber volume fraction. The stress‐strain curve of SRRC with fibers in the random distribution agrees well with that measured in the experiments. However, there exists a significant difference between experimental and numerical results as fiber volume fraction increases. POLYM. COMPOS., 38:381–388, 2017. © 2015 Society of Plastics Engineers  相似文献   

13.
In this work, the self‐monitoring capability of epoxy matrix‐carbon fiber composites has been studied. Different concentrations and arrangements of reinforcements were used, including random chopped, unidirectional and bi‐directional continuous carbon fibers, weaved and nonweaved. Mechanical properties were determined by uniaxial tensile tests. The composite electric to mechanical behavior was established by determining its electrical resistivity variation as a function of the stress‐strain curve. It was observed that the composites electrical resistance increased during tensile tests, a trend that indicates piezoresistive behavior. The increase was linear for the chopped reinforced composites, while it exhibits different slopes in the continuous reinforced composites. The initial smaller slope corresponds mainly to separation of the 90° oriented fibers and/or transversal cracking of the matrix, whereas the latter higher slope is caused by fiber fracture. The results demonstrated how each reinforcement configuration exhibited a unique and typical electrical response depending on the specific reinforcement, which might be appropriate either for strain‐monitoring or damage‐monitoring. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
We have covalently functionalized graphene oxide (GO) with octadecylamine (ODA) to form GO–ODA. This material can be dispersed in tetrahydrofuran (THF) and subsequently formed into composites with polymers such as thermoplastic polyurethane (TPU). We have characterized the mechanical properties of composites of GO–ODA in TPU. No increase in stiffness was observed at loading levels below 2.5 vol%. Reinforcement appeared to start sharply at this volume fraction and subsequently increased as a power law with increasing volume fraction. This behavior is typical of percolation and shows that the low-strain stress is not increased until the functionalized graphene flakes form a percolating network. Slightly different behavior is observed for properties related to material failure. The ultimate tensile strength increased linearly with graphene content up to the percolation threshold before subsequently falling off. Similarly the strain at break was constant below the percolation threshold but fell off dramatically above it. This work shows the importance of network formation in the reinforcement of elastomeric materials.  相似文献   

15.
The mechanical behavior of poly(di‐methyl siloxane) (PDMS) composites containing high volume fractions of natural CaCO3 particles of various particle size distributions was studied under tensile and oscillatory bending stresses, emphasizing the unique behavior of high filler loaded compositions. Composites containing the maximal possible solid loading of raw CaCO3 were investigated for the effect of fatty acids surface treatment. The elastic modulus increased with increasing filler loading, following Chantler's model for dental composites when correlated with the absolute filler volume fraction. Good fit to “traditional” models, e.g., Frankle‐Acrivos and Halpin‐Tsai, was obtained by correlating the modulus values with the volume fraction relative to the maximal possible filler loading. A master curve of different particle size distributions and filler levels composites was obtained by using the relative volume fraction values, illustrating the effect of particle packing characteristics on small deformation mechanical behavior. A minor increase in Tg was found in parallel to the appearance of a Tm relaxation peak at approximately −40°C. A peak temperature shift at Tm and a pronounced increase in this peak with increasing filler fraction was found as well. The changes in the melting transition are attributed to the constraints of the filler particles acting on the crosslinked melting polymer. Surface treatment with fatty acids significantly degraded the tensile properties. Interestingly, an increase of 4 vol% filler was enabled owing to the surface treatment, while restoring reasonable tensile properties. No significant effect was observed for excess of fatty acids resulting from physically adsorbed acids. Tan δ curves reveal low PDMS‐CaCO3 particles interactions, and mobility of the PDMS chains in the increased filler fraction as in the treated 64 vol% composite, both higher than those in the raw composite. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

16.
Unlike fibers, planar reinforcements, such as flakes and ribbons, provide reinforcement in two directions. If such reinforcements are arranged parallel to their principal plane in a composite material, they thus provide a distinctly higher performance than fiber reinforcements for two-dimensional loading conditions. This higher performance amounts to about a factor three for the Young's modulus and a factor two for the tensile strength. However, in spite of this obvious advantage, composites with planar reinforcements are as yet relatively unknown. This is mainly due to the fact that planar reinforcements are not as readily available as fiber reinforcements and therefore not much work has been done on them. The present article gives first a short outline of the theory of the elastic and tensile properties of composites with planar reinforcements. Then, a non-exhaustive review is presented of the work on composites with planar reinforcements, with particular attention given to recent developments. A final aim of this article is that by showing the merits of planar reinforcements as compared to presently existing fiber reinforcements, it may contribute to their use in the design of composite structures.  相似文献   

17.
许亭  邹华  廖坤  张继阳 《橡胶工业》2018,65(8):866-870
研究镀银镍粉体积分数对镀银镍粉/硅橡胶高导电复合材料性能的影响。结果表明:随着镀银镍粉体积分数增大,复合材料的邵尔A型硬度增大,拉断伸长率快速减小,体积电阻率减小并出现明显逾渗现象;当镀银镍粉体积分数为0.44时,复合材料具有良好的导电稳定性和优异的电磁屏蔽效能,但耐电化学腐蚀性能较差。  相似文献   

18.
This research explores the potential of using exfoliated graphite nanoplatelets, xGnP, as the reinforcement in high density polyethylene (HDPE). Two kinds of xGnP nanoparticles were used; xGnP‐1 has the thickness of 10 nm and a platelet diameter of 1 μm, whereas xGnP‐15 has the same thickness but the diameter is around 15 μm. HDPE/xGnP nanocomposite were fabricated first by melt blending and then followed by injection molding. The HDPE/xGnP nanocomposite's flexural strength, modulus and impact strength were evaluated and compared with composites filled with commercial reinforcements such as carbon fibers (CF), carbon black (CB) and glass fibers (GF). Polymer nanocomposites from HDPE/xGnP are equivalent in flexural stiffness and strength to HDPE composites reinforced with glass fibers and carbon black but slightly less than that of HDPE/carbon fiber composites at the same volume fraction. However, the Izod impact strength of HDPE/xGnP nanocomposites is significantly greater (∼250%) than all other reinforcements at the same volume fractions. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

19.
化学气相渗透2.5维C/SiC复合材料的拉伸性能   总被引:2,自引:0,他引:2  
采用等温减压化学气相浸渗(isothermal low-pressure chemical vapor infiltration,ILCVI)工艺制备了在厚度方向上具有纤维增强的2.5维(2.5 dimensional,2.5D)碳纤维增强碳化硅多层陶瓷基复合材料,从而使一端封口的防热结构部件的制备成为可能.ILCVI致密化后,复合材料的密度、孔隙率分别为1.95~2.1 g/cm3和16.5%~18%.沿经纱和纬纱两个方向对2.5D C/SiC复合材料进行室温拉伸实验.结果表明:复合材料在纵向和横向的拉伸应力-应变均表现为明显的非线性行为.复合材料具有较高的面内拉伸性能,纵横向的拉伸强度分别为326MPa和145MPa,断裂应变分别为0.697%和0.705%.复合材料的拉伸断裂为典型的韧性断裂,经纱和纬纱的断裂都表现为纤维的多级台阶式断裂以及纤维的大量拔出.  相似文献   

20.
Dilatation of specimens is measured during tensile tests to investigate the mechanical response of particulate-filled amorphous networks in the glassy state. The effects of particle size, volume fraction of filler, coupling agents, and crosslink density of the matrix on the mechanical-dilatational behavior are studied on model composites of glass-bead-filled polyurethanes. It is found that the stress-strain response of composites with untreated glass beads shows nonlinearity and subsequent yielding due to dewetting of particles from the matrix. In contrast, composites containing particles coated with a comupling agent fracture in a brittle manner, showing no significant nonlinearity and dewetting. Coated particles provide a higher tensile strength, but a lower strain at fracture, than uncoated particles. The volume fraction of the filler has an effect on Young's modulus, which is independent of the degree of coupling between the matrix and the filler. Tensile strength and strain at break decrease with increasing filler content for coated and uncoated particles. No strong effect of particle size is observed on either the tensile modulus or the dilatational behavior in the 25 μm to 160 μm diameter range. However, strain at break increases with decreasing particle size. When the accompanying yield phenomena shift to smaller strains, and a transition to brittle fracture takes place at high crosslink densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号