首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
静电纺丝聚合物纤维的研究进展   总被引:2,自引:0,他引:2  
介绍了静电纺丝法制备聚合物纤维的原理及其影响因素,综述了国内外静电纺丝聚合物纤维的研究进展及其应用状况,指出了静电纺丝聚合物纤维需要解决的若干问题,并对静电纺丝技术的发展进行了展望.  相似文献   

2.
简述了离心静电纺丝技术的工作原理,对国内外近期离心静电纺丝的研究进展进行了综述.总结了离心静电纺丝的成纤机理,根据纺丝材料特性,将离心静电纺丝分为溶液离心静电纺丝和熔体离心静电纺丝两类,并将这两类纺丝方法的装置和工艺创新进行了分类,总结了各种装置的结构特征和优缺点,并对其工艺参数进行了分析.最后对离心静电纺丝微纳米纤维...  相似文献   

3.
将静电纺丝技术应用到高分子材料研究中,可以制备聚合物纳米纤维,在众多领域有广阔的应用前景。从静电纺丝聚合物纳米纤维原理、有序性、应用的角度,简述其研究进展,并指出一些仍待解决的问题,同时对电纺聚合物纳米纤维未来发展进行了展望。  相似文献   

4.
聚合物共混体系流变行为的研究进展   总被引:1,自引:1,他引:0  
刘丹丹  芦艾 《塑料科技》2006,34(4):90-94
介绍了聚合物共混体系的研究现状以及研究聚合物共混体系的流变行为的必要性,并讨论了影响聚合物共混体系的流变行为的各种因素。  相似文献   

5.
本文讨论了通过共聚、接枝、嵌段、互穿网络、交联、添加增容剂和改变加工条件等方法以改善共混聚合物的相容性。  相似文献   

6.
丝素/聚乳酸静电纺丝的研究   总被引:2,自引:0,他引:2  
以具有一定生物活性、细胞黏附性能好的丝素蛋白与降解性能优良的聚乳酸复合,以静电纺丝方法形成20%丝素与80%聚乳酸的丝素/聚乳酸共混纤维非织造网。通过扫描电子显微镜研究其形态,X-射线衍射、红外光谱等分析研究其聚集态结构变化。研究表明:丝素/聚乳酸静电纺的纤维直径与电压、接收距离大小和后处理方法有关;不同后处理方法对丝素/聚乳酸静电纺纤维的结晶结构有较大影响。  相似文献   

7.
聚合物共混相容性研究进展   总被引:5,自引:0,他引:5  
介绍了聚合物共混相容性的热力学理论,讨论了相容性的实验表征方法,包括共混物形态和物性表征等,提出了改善聚合物相容性的重要途径及其进展。  相似文献   

8.
本文讨论了共混聚合物相容性的热力学关系式及影响相容性的因素如溶度参数δ、极性、表面张力γ、结晶能力、粘度和分子量等,分子内和分子间的相互作用对相容性的影响也很大。  相似文献   

9.
再生丝素蛋白/聚乙烯醇共混纳米纤维的静电纺丝研究   总被引:1,自引:0,他引:1  
刘芸  薛华育  戴礼兴 《合成纤维》2006,35(8):13-16,19
以静电纺丝方法制备再生丝素蛋白/聚乙烯醇共混纳米纤维。研究了共混配比、溶液浓度、添加剂含量及电纺电压、喷丝距离等因素对纤维成形及纤维有关性能的影响。研究表明:与聚乙烯醇共混后再生丝素纤维的柔韧性有一定改善,适当增加PVA在共混物中的含量、提高纺丝液浓度以及纺丝电压有利于改善共混溶液的可纺性。另外,加入丙三醇虽可使纤维直径的均匀性有所提高,但却不利于纤维成形。  相似文献   

10.
采用聚氧化乙烯(PEO)与壳聚糖(CS)混合配制PEO/CS的稀醋酸溶液,进行静电纺丝,制得PEO/CS纳米纤维毡.考察了静电纺丝工艺条件对纤维直径和形貌的影响,并对PEO/CS纳米纤维毡进行了形态、结构、结晶性能、亲水性能等方面的表征.结果表明:PEO/CS纳米纤维毡的静电纺丝的最佳参数值为PEO/CS质量比为70/...  相似文献   

11.
Electrospinning of a biodegradable polymer blend of poly(lactic acid) (PLA) and poly(butylene adipate‐co‐terephthalate) (PBAT) is reported for the first time. Effects of several solution parameters on electrospinning are explored, including types of single and binary solvents, binary solvent mixing ratio, polymer blend concentration, polymer blending ratio, and loading content of tetrabutyl titanate as a compatibilizer. An electrospinnability–solubility map of the PLA/PBAT blend is firstly developed for the facile selection of a suitable binary solvent system, thus simplifying the laborious, time‐consuming, trial‐and‐error process. A particular binary solvent system derived from good and non‐solvent serves as the most suitable medium for the successful preparation of homogeneous bead‐free electrospun PLA/PBAT nanofibers. It is revealed that the compatibilizer acts not only as a diameter size tuner for the PLA/PBAT fibers but also as a mechanical property enhancer for the immiscible PLA/PBAT electrospun mats. Moreover, the antibacterial activity of the drug‐loaded PLA/PBAT fibrous mats suggests their potential application as antibiotic‐carrier mats. Preparation of the composite mats comprising bead‐free fibers with an average size at sub‐micrometer scale is also demonstrated, additionally promoting the possibility of using the PLA/PBAT‐based electrospun mats as a matrix of various additives for a wide range of applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46486.  相似文献   

12.
The intrinsic viscosities of blends of bisphenol-A polycarbonate and poly(hexamethylene sebacate) have been measured in chloroform as a function of blend composition for a variety of molecular weight species. The compatibility of the polymer blend mixtures is characterized by the parameter δb, from the Krigbaum and Wall theory. Using Tg of the blend as a measure of bulk solid-state compatibility, a correlation is obtained with the Krigbaum and Wall parameter δb for each of the molecular weight pairs studied. Slopes of the correlation are invariant, as expected, as the chemical composition is the same for the different molecular weight pairs studied.  相似文献   

13.
PBT/PET共混体系相容性研究   总被引:3,自引:1,他引:3  
将聚对苯二甲酸丁二醇酯(PBT)与聚对苯二甲酸乙二醇酯(PET)熔融共混,通过粘度匹配原则, 确定PBT/PET共混体系的熔体温度为275-285℃,在283℃时制得PBT/PET共混切片,并对其共混体系进行相容性研究。结果表明:PBT/PET共混体系的理论热焓均小于41.8 mJ,为热力学相容体系;由扫描电镜观察PBT/PET共混体系在PBT和PET交界处发生了相分离,当PBT与PET共混比越接近,相分离程度越明显;DSC分析表明PBT/PET共混体系在非晶区相容,晶区不相容。  相似文献   

14.
15.
In this work, the compatibility of poly(methyl methacrylate) (PMMA) and polystyrene (PS) polymers with their polyhedral oligomeric silsesquioxane (POSS) copolymers combined by solution blending is investigated, to determine the effect of incorporation of the POSS unit on polymer compatibility. The morphology of these tethered POSS copolymer/polymer blends was studied by electron microscopy, thermal analysis, and density. Although the basic PS/PMMA blend was clearly immiscible, it was also found that the incorporation of POSS into the PS chain led to incompatibility when the POSScoPS copolymer was blended with PS homopolymer. However, conversely, in the case where the POSS moiety was included as part of a copolymer with PMMA, the copolymer was miscible with the PMMA homopolymer. The presence of isobutyl units on the corners of POSS cage is clearly sufficient to encourage miscibility with PMMA. Interestingly, blends of the two different POSS copolymers led to an immiscible structure, despite having the common POSS units, the interactions between the POSS moieties clearly not being sufficient to drive compatibility. The POSS copolymers have also been used as interfacial agents in immiscible PS and PMMA blend, and it has been found that the appearance of the interface bonding is improved, although the phase morphology is only slightly changed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
用紫外光谱、X射线衍射和DSC、偏光显微锐、相差显微镜和电镜等方法研究了乙基纤维素-聚苯乙烯共混体系的相溶性。结果表明该体系为部分相溶体系。  相似文献   

17.
聚合物合金相容性研究进展   总被引:3,自引:0,他引:3  
张雪娇  赵晓莉 《陕西化工》2012,(8):1448-1451
在聚合物合金的制备过程中,主要是通过加入增容剂来改善聚合物合金相容性。早期普遍采用非反应型增容剂,而目前主要是以反应型增容剂为主。改变链结构、利用低分子量化合物、互穿网络技术等也是改善聚合物合金的常用办法。此外,无机纳米粒子对聚合物共混体系相容性也会产生一定影响。  相似文献   

18.
The relationships between the compatibility in binary polymer blends and the pore sizes of carbon nanofibers (CNFs) prepared from the blends were investigated. Compatibility was determined by the difference between the solubility parameters of each polymer in the polymer blends. Porous CNFs were prepared by an electrospinning and carbonization process using binary polymer blends, consisting of polyacrylonitrile (PAN) as the carbonizing polymer and poly(acrylic acid) (PAA), poly(ethylene glycol), poly(methyl methacrylate) or polystyrene (PS) as the pyrolyzing polymer. The pore size of the CNFs increased with increasing difference in solubility parameter. The CNFs prepared using the PAN/PAA blend, which had the smallest solubility parameter difference, exhibited a pore size of 1.66 nm compared to 18.24 nm for the CNFs prepared using the PAN/PS blend. The prepared CNF webs with controlled meso‐sized pores showed a stable cycle performance in cyclic voltammetry measurements and improved impedance characteristics. This method focusing on the compatibility in polymer blends was simple to apply and effective for controlling the pore sizes and surface area of CNFs for application as electrode materials in energy storage systems. © 2013 Society of Chemical Industry  相似文献   

19.
Sepehr Ravati 《Polymer》2010,51(20):4547-1709
For the most part, ternary polymer blends demonstrate complete wetting behavior. Conceptually, this is the state where one of the components will always tend to completely separate the other two and from a thermodynamic viewpoint is described as the case where two of the three possible binary spreading coefficients are negative and the other is positive, as defined by Harkins spreading theory. This work examines the complete range of morphological states possible for such a system over the entire ternary composition diagram as prepared by melt mixing. A ternary polymer blend comprised of high-density polyethylene (HDPE), polystyrene (PS), and poly(methyl methacrylate) (PMMA) is selected as a model system demonstrating complete wetting and four sub-categories of morphologies can be identified including: a) matrix/core-shell dispersed phase; b) tri-continuous; c) matrix/two separate dispersed phases, and d) bi-continuous/dispersed phase morphologies. Electron microscopy as well as a technique based on the combination of focused ion beam irradiation and atomic force microscopy are used to clearly illustrate and identify the various phases. Solvent extraction/gravimetry is used to examine the extent of continuity of the systems so as to effectively identify regions of high continuity. Triangular compositional diagrams are used to distinguish these various morphological regions and the results are interpreted in light of the interfacial tension of the various binary combinations and their subsequent spreading coefficients. The effect of the molecular weight and of viscosity ratio on the phase size of the various structures is also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号