首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In this paper, amino acid functionalized multi-walled carbon nanotubes (f-MWCNTs)/poly(amide-imide) (PAI) nanocomposites (NCs) were prepared by a solution mixing method. First, 4,4′-methylenebis(3-chloro-2,6-diethyl trimellitimidobenzene) reacted with 3,5-diamino-N-(4-hydroxyphenyl)benzamide in tetra-n-butylammonium bromide as a green medium and a safe methodology (toxic and volatile organic solvents were eliminated) to produce a nanostructured PAI in high yield. MWCNTs were chemically modified with S-valine using microwave irradiation in order to obtain a homogeneous dispersion of MWCNTs in the PAI matrix. The resulting NCs were also characterized by FT-IR, powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and thermogravimetric analysis. The TEM and FE-SEM images confirmed good dispersion of f-MWCNTs in the polymer matrix. The results of TGA analysis suggest that a good thermal stability occurs especially with low filler amounts (5 wt%) of f-MWCNT.  相似文献   

2.
In this article, a series of optically active poly(amide–imide)/zinc oxide nanocomposites (PAI/ZnO NCs) with different ZnO contents were prepared by ultrasonic technique. For better dispersion of nanoparticles (NPs) in the PAI matrix, their surface was modified with two different silane coupling agents. Then, the effects of two linkers on dispersity of NPs, thermal stability and UV–Visible spectra of resulting NCs were investigated. The morphological structures, thermal, and UV properties of the prepared NCs with two different coupling agents were studied by X-ray diffraction, transmission electron micrograph, field emission scanning electron microscopy, thermogravimetric analysis, and UV–Visible analysis. These data demonstrated that the surface-modified ZnO NPs were homogeneously dispersed in the PAI matrix. However, in the case of KH570 the better dispersity is more pronounced.  相似文献   

3.
At room temperature, two different morphological nanoscaled BiOxF3 − 2x (BiOF nanosheets and Bi26O38F2 nanorods) have been prepared via a simple solution-based route in the presence of diethanolamine (DEA) and NaOH. The compositions and morphologies of bismuth oxyfluoride can be selectively prepared by varying the type of additives. The products were characterized by X-ray diffraction (XRD), energy-disperse X-ray analysis (EDXA), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray photoelectron spectrum (XPS). A possible mechanism was introduced to explain the formation of the products.  相似文献   

4.
Nanocomposites containing FeCo alloy nanoparticles dispersed in a highly ordered 3D cubic Im3m mesoporous silica (SBA-16) matrix were prepared by a novel, single-step templated-assisted sol-gel technique. Two different approaches were used in the synthesis of nanocomposites; a pure SBA-16 sample was also prepared for comparison. Low-angle X-ray diffraction, transmission electron microscopy and N2 physisorption at 77 K show that after metal loading, calcination at 500 degrees C and reduction in H2 flux at 800 degrees C the nanocomposites retain the cubic mesoporous structure with pore size not very different from the pure matrix. X-ray absorption fine structure (EXAFS) analysis at Fe and Co K-edges demonstrates that the FeCo nanoparticles have the typical bcc structure. The final nanocomposites were tested as catalysts for the production of carbon nanotubes by catalytic chemical vapour deposition and high-resolution TEM shows that good quality multi-walled carbon nanotubes are obtained.  相似文献   

5.
Deliberately inorganic nanoparticles (NP)s in polymer matrices significantly affect their characteristics and therefore their applications, but key factor to achieve the expected efficiency is well dispersion of the NPs in polymer matrix. The work presented here deals with the polymerization of amino acid-based monomer to synthesize optically active poly(ester-imide) (PEI) with hydroxyl terminated groups, using tosyl chloride/pyridine/N,N-dimethylformamide system as a condensing agent. The synthesized polymer was used for the preparation of bionanocomposite (BNC) containing modified titanium dioxide (TiO2) NPs using ultrasonic irradiation. With the aim of γ-amidopropyl-triethoxylsilicane as a coupling agent, the surface of nanoscale TiO2 was modified to decrease aggregation of the NPs in polymer matrix. The obtained PEI/TiO2 BNCs were characterized with fourier transfer infrared (FT–IR), thermogravimetric analysis, field emission scanning electron microscopy (FE–SEM), X-ray diffraction and transmission electron microscopy (TEM) techniques. Morphology study of resulting PEI/TiO2 BNCs by FE–SEM and TEM analyses demonstrated that the hydroxyl-terminated polymer chains reduced aggregation of the NPs and thus lead to better dispersion of the NPs in the polymer matrix.  相似文献   

6.
Carbon nanotube–MgAl2O4 composite powders were successfully prepared through solution combustion synthesis (SCS) followed by catalytic chemical vapor deposition (CCVD) of methane. Catalyst powders were synthesized starting with the stoichiometric ratios of metal nitrates and urea with a small amount of water and different Fe contents followed by subjecting the solution to heat. The obtained powders were placed in a silica tube to react with methane and form carbon nanotubes. It is noteworthy that no hydrogen was used throughout the whole process. Catalysts and composite powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The quality of products were evaluated by ID/IG ratio obtained from G and D bands intensities in Raman spectra of samples having 10 and 15 wt.% iron. The final product mostly comprised a mixture of single- and double-walled nanotubes on the catalyst containing 10 wt.% Fe, while no carbon product was formed on the catalyst with 5 wt.% Fe.  相似文献   

7.
The wurtzite-type Zn0.99−xMn0.01CuxS (x = 0, 0.003, 0.01) nanowires were prepared by a simple hydrothermal method at 180 °C. The structure and morphology of the samples were characterized by X-ray diffraction (XRD), X-ray absorption fine structure (XAFS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), field emission scanning electron micrograph (FESEM) and X-ray photoelectron spectrum (XPS). The results showed that both the Mn2+ and Cu2+ ions substituted for the Zn2+ sites in the host ZnS. The ethylenediamine-mediated template was observed, which was used to explain the growth mechanism of the nanowires. The color-tunable emission can be obtained by adjusting the concentrations of Mn2+ and Cu2+ ions. The ferromagnetism was observed around room temperature.  相似文献   

8.
Partially stabilized zirconia (PSZ) materials containing 2.5 and 5.0 mol % Y2O3 were prepared by pressureless sintering and aged at 1200° C for 1000 IS, and their microstructures were analysed by transmission electron microscopy and electron diffraction methods. Tetragonal zirconia polycrystal (TZP) containing 2.5 mol % Y2O3 before ageing showed nearly 100% tetragonal microstructure and 0.5 m grain size, but after ageing the microstructure changed greatly, exhibiting no simple grain structure over wide areas. Repeated twin structures within the grains were observed. Y-PSZ material containing 5.0M01% Y2O3 before ageing showed a tetragonal (I structure within a cubic (c) stabilized ZrO2 matrix, After ageing, structures of fine strip crystals crossed each other orthogonally within the cubic matrix and typical diffuse scattering in the diffraction pattern was observed. Repeated twins were found on the plane of (100)m, and the orientational relationship between tetragonal (t) and monoclinic (m) crystal was determined to be (100)m [(100)t, [010]m \tT [001b]t.  相似文献   

9.
In this study, cupric oxide (CuO) nanoparticles were prepared using sonochemical method. The prepared nanoparticles were studied using X‐ray diffraction (XRD) pattern, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) methods. The colloidal chitosan (CS) solution was prepared using ultrasound irradiation method and simultaneously mixed with CuO nanoparticles. The coatings of colloidal solution with and without CuO nanoparticles were studied through TEM images. The cotton fabrics were separately soaked in the prepared nanoparticle‐containing (hybrid) solutions by sonication method followed by pad‐dry‐cure method. The structural, functional, and morphological analyses of the coated and uncoated fabrics were performed using XRD, FTIR‐attenuated total reflectance, and SEM analyses, respectively. The hybrid‐coated cotton fabrics showed better antibacterial activity against Staphylococcus aureus and Escherichia coli. The bioactivity performance of the coated fabrics was in the order of CuO‐coated fabric > CS‐coated fabric.Inspec keywords: cotton fabrics, nanoparticles, antibacterial activity, transmission electron microscopy, Fourier transform spectroscopy, infrared spectroscopy, scanning electron microscopy, copper compoundsOther keywords: antibacterial activity, hybrid chitosan‐cupric oxide nanoparticles, cotton fabric, cupric oxide nanoparticles, sonochemical method, X‐ray diffraction, XRD pattern, Fourier transform infrared spectroscopy, FTIR spectroscopy, scanning electron microscopy, SEM, transmission electron microscopy, TEM methods, colloidal chitosan solution, ultrasound irradiation method, colloidal solution, TEM images, cotton fabrics, nanoparticle‐containing solutions, sonication method, pad‐dry‐cure method, morphological analyses, structural analyses, functional analyses, FTIR‐attenuated total reflectance, SEM analyses, hybrid‐coated cotton fabrics, Staphylococcus aureus, Escherichia coli, bioactivity performance, CuO  相似文献   

10.
Polypropylene (PP)/microcrystalline cellulose (MCC)/wood flour composites were prepared containing polypropylene-graft-maleic anhydride (PP-g-MA) as compatibilizer. The mechanical, morphological and thermal properties were investigated. The weight ratio of the cellulosic materials to polymer matrix was 40:60 (w:w). The obtained results showed that tensile, flexural and impact strengths of the composites were significantly enhanced with addition of MCC, as compared with pure PP and composites without MCC. The effect of MCC on impact was minimal compared to the effects of PP-g-MA content. Scanning electron microscopy has shown that the composite, with compatibilizer, promotes better fiber–matrix interaction. In all cases, the degradation temperatures shifted to higher values after addition of PP-g-MA. The maximum improvement on the thermal stability of the composites was achieved when 5% PP-g-MA was used. However, the increase in MCC content substantially reduced the thermal stability. This work showed that MCC along with wood flour could be effectively used as reinforcing agent in thermoplastic matrix.  相似文献   

11.
Bioactive glasses in the systems SiO2–CaO–P2O5–MgO (BGZn0) and SiO2–CaO–P2O5–MgO–ZnO (BGZn5), were prepared by sol–gel method and then characterized. Surface reactivity was studied in simulated body fluid (SBF) to determine the effect of zinc (Zn) addition as a trace element. The effect of Zn addition to the glass matrix on the formation of apatite layer on the glass surface was investigated through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT–IR) and scanning electron microscopy (SEM). Also, inductively coupled plasma–optical emission spectroscopy (ICP–sOES) was used to determine the concentrations of released ions in SBF solution after different time intervals in SBF solution. The antibacterial activity of Zn containing glass against Pseudomonas aeruginosa was measured by the halo zone test. The presence of Zn in glass composition improved chemical durability, slowed down the formation rate of Ca–P layer and decreased the size of crystalline apatite particles. Zn containing glass exhibited an excellent antibacterial activity against P. aeruginosa which could demonstrate its ability to treat bone infection.  相似文献   

12.
Novel 2D ordered arrays formed by self-assembly of SiOx nanowire bundles have been prepared on a silicon wafer via a facile metal-mediated gas-phase reaction. The products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Two types of arrays were grown on a substrate surface by adjusting the preparation parameters. The findings suggest that the growth atmosphere, the flow rate of carrier gas and the relative placement of source and substrate are all responsible for the formation of these unique self-assembled structures. The intermolecular action is the internal driving force for the self-assembly. The formation mechanism of the arrays was proposed on the basis of the growing process.  相似文献   

13.
A microwave-assisted emulsion process has been developed to synthesize birnessite-type MnO2 one-dimensional (1D) nanostructures. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). TEM images confirmed that the particles were composed of nanowires and nanobelts. As a consequence of the small size, such MnO2 nanostructures exhibit a high specific capacitance of 277 F g−1 at the current density of 0.2 mA cm−2. Furthermore, the simple synthetic approach may provide a convenient route for the preparation of birnessite-type MnO2 nanowires and other 1D nanostructured materials on a large scale.  相似文献   

14.
《Composites Part A》2007,38(1):107-113
Gold and copper–gold nanoparticles were synthesized using anionic microemulsions as reducing reactors. The microemulsions were prepared using sodium bis(2-ethylhexyl)sulfosuccinate (Aerosol OT) and copper(II) bis(2-ethylhexyl)sulfosuccinate (Cu(AOT)2) as surfactants, which were dissolved in isooctane containing an appropriate quantity of water. The growth of nanoparticles was monitored by UV/vis spectroscopy and the nanoparticles formed were characterized by transmission electron microscopy (TEM). The metallic nanoparticles were incorporated into films of an electroconductive polymer (ECP) composite: polyaniline-poly(n-butyl methacrylate) (PANI/PBMA) by the casting technique. The nanoparticle-ECP composite films were characterized by scanning electron microscopy (SEM), electrical conductivity measurements and NH4OH and H2O2-sensing capability experiments. The inclusion of nanoparticles results in a cooperative phenomena between the polyaniline and the nanoparticles and as a consequence, the gold nanoparticles increased the electrical conductivity of the ECP film by two orders of magnitude.  相似文献   

15.
Nanometer-sized α-Fe2O3 particles have been prepared by a simple solvothermal method using ferric acetylacetonate as a precursor. The products were characterized by X-ray diffraction (XRD), energy dispersive X-ray microanalysis (EDAX), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transition electron microscopy (TEM), infrared spectroscopy (IR) and thermal analysis (TG-DTA). XRD indicates that the product is single-phase α-Fe2O3 with rhombohedral structure. Bundles of acicular shaped nanoparticles are seen in TEM images with an aspect ratio ~ 12; typically 8–12 nm wide and over 150 nm long. The α-Fe2O3 nanoparticles posses a high thermal stability, as observed on thermal analysis traces.  相似文献   

16.
Cu2O nanorods were synthesized by reducing bamboo leaf-shaped Cu(OH)2 with sodium hypophosphite (NaH2PO2) in an H2O/ethylene glycol (EG) mixing solution. The Cu(OH)2 was prepared by adding an alkaline solution to an aqueous solution containing CuSO4 and NaH2PO2 at room temperature. The optimum temperature range for the reduction of the Cu(OH)2 to Cu2O nanorods was 55-70 °C. The products were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. The result showed the prepared Cu2O nanorods were uniform and had diameters of 10-20 nm and lengths of 150-200 nm. The synthesis is simple, inexpensive, and highly repeatable.  相似文献   

17.
Nickel-Pitch-based carbon fibres (Ni-PFs) were prepared by electroless nickel-plating to enhance fracture toughness of Ni-PFs reinforced epoxy matrix composites (Ni-PFs/epoxy). The surface properties of Ni-PFs were determined by scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS), and X-ray diffraction (XRD). The fracture toughness of the Ni-PFs/epoxy was assessed by critical stress intensity factor (KIC) and critical strain energy release rate (GIC). The fracture toughness of Ni-PFs/epoxy was enhanced compared to those of PFs/epoxy. These results were attributed to the increase of the degree of adhesion at interfaces between Ni-PFs and matrix resins in the composites.  相似文献   

18.
The Cu2O/SnO2/graphene (CSG) and SnO2/graphene (SG) nanocomposite photocatalysts were prepared by simple sol-gel growth method, and characterized by Fourier transform infrared spectra (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) measurements, respectively. The photocatalytic efficiency of catalysts were evaluated by degradation of pendimethalin under visible light irradiation (λ > 420 nm), which conformed that CSG and SG exhibited better photocatalytic activity than SnO2 or graphene alone. An effort has been made to correlate the photoelectro-chemical behavior of these samples to the rate of photocatalytic degradation of pendimethalin.  相似文献   

19.
α-Fe nanoparticles were prepared by reduction of Fe2+ using potassium borohydride in a simple ethanol/water system in the presence of surfactant. The in-situ modification of particles was carried out by taking advantage of a modifying solution containing Ni2+. The structure and size of the particles were investigated by X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS), transmission electron microscopy (TEM) and electron diffraction (ED). Results showed that the in-situ electrochemical reaction between α-Fe nanoparticles and Ni2+ resulted in the formation of stable multilayer composite nanostructure. The cores of composite nanostructure were α-Fe.  相似文献   

20.
In this study, we report a simple and cost-effective method for self-sterilized complex coatings obtained by Ag@TiO2 particle incorporation into styrene–acrylic latex. The Ag@TiO2 particles were prepared via a coupling agent modification process. The composite latices characterized by transmission electron microscopy (TEM) study were highly homogeneous at the nanometric scale, and the Ag@TiO2 particles were well dispersed and exhibited an intimate contact between both the organic and inorganic components. The Ag@TiO2 nanoparticles significantly enhanced the absorption in the visible region and engendered a good heat-insulating effect of the complex coatings. Moreover, the Ag@TiO2 nanoparticle incorporation into this polymer matrix renders self-sterilized nanocomposite materials upon light excitation, which are tested against Escherichia coli and Staphylococcus aureus. The complex coatings display an impressive performance in the killing of all micro-organisms with a maximum for a Ag@TiO2 loading concentration of 2–5 wt.%. The weathering endurance of the complex coating was also measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号