首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A new nanostructure of CoFe2O4@Y2O3:5 %Tb3+ magnetic-luminescent bifunctional coaxial nanofibers has been successfully fabricated via electrospinning technology using a homemade coaxial spinneret. The morphologies, structures, magnetic and luminescent properties of the final products were investigated in detail by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, and fluorescence spectroscopy. The results show the CoFe2O4@Y2O3:5 %Tb3+ magnetic-luminescent bifunctional coaxial nanofibers simultaneously possess superior magnetic and luminescent properties due to isolating Y2O3:5 %Tb3+ luminescence center from CoFe2O4 magnetic nanofibers. Furthermore, the luminescent intensity and color of the coaxial nanofibers can be tuned via adjusting the concentrations of rare earth ions. The bifunctional magnetic-luminescent CoFe2O4@Y2O3:5 %Tb3+ coaxial nanofibers have potential applications in biomedical area, such as drug-delivery systems, cell labeling and separation, enhancement for magnetic resonance imaging, and subsequent optical identification. More importantly, the design conception and construction technology are of universal significance to fabricate other bifunctional coaxial nanofibers.  相似文献   

2.
CoFe2O4@Y2O3:Eu3+ magnetic–fluorescent bifunctional coaxial nanofibers have been successfully obtained via calcination of the [CoFe2O4/PVP]@[(Y(NO3)3 + Eu(NO3)3)/PVP] composite coaxial nanofibers which were fabricated by coaxial electrospinning technique. The diameter of CoFe2O4@Y2O3:5 %Eu3+ magnetic–fluorescent bifunctional coaxial nanofibers was 133 ± 17 nm. Strong fluorescence emission peaks of Eu3+ in the CoFe2O4@Y2O3:Eu3+ coaxial nanofibers were observed and assigned to 5D0 → 7F1 (588 nm), 5D0 → 7F1 (593 nm), 5D0 → 7F1 (599 nm), 5D0 → 7F2 (612 nm) and 5D0 → 7F2 (630 nm) energy levels transitions of Eu3+ ions, and the predominant emission peak was located at 612 nm. Compared with CoFe2O4/Y2O3:Eu3+ composite nanofibers, CoFe2O4@Y2O3:Eu3+ magnetic–fluorescent bifunctional coaxial nanofibers simultaneously provided higher magnetism and fluorescent intensity. The color, photoluminescent intensity and magnetism of the coaxial nanofibers can be tuned via adjusting the diversity and content of fluorescent compounds and the content of magnetic compounds. Formation mechanism of CoFe2O4@Y2O3:Eu3+ coaxial nanofibers was also presented. The bifunctional magnetic–photoluminescent CoFe2O4@Y2O3:Eu3+ coaxial nanofibers have potential applications in many fields due to their excellent magnetism and fluorescence.  相似文献   

3.
Magnetic-photoluminescent bifunctional Janus nanofibers have been successfully fabricated by electrospinning technology using a homemade parallel spinneret. NaYF4:Eu3+ and Fe3O4 nanoparticles (NPs) were respectively incorporated into polyvinyl pyrrolidone (PVP) and eleactrospun into Janus nanofibers with NaYF4:Eu3+/PVP as one strand nanofiber and Fe3O4/PVP as another strand nanofiber. The morphologies, structures, magnetic and photoluminescent properties of the as-prepared samples were investigated in detail by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, energy dispersive spectrometry, vibrating sample magnetometry and fluorescence spectroscopy. The results show Janus nanofibers simultaneously possess superior magnetic and luminescent properties due to their special structure, and the luminescent characteristics and saturation magnetizations of the Janus nanofibers can be tuned by adding various amounts of NaYF4:Eu3+ NPs and Fe3O4 NPs. Compared with Fe3O4/NaYF4:Eu3+/PVP composite nanofibers, the magnetic-photoluminescent bifunctional Janus nanofibers provide better performances due to isolating NaYF4:Eu3+ NPs from Fe3O4 NPs. The novel magnetic-photoluminescent bifunctional Janus nanofibers have potential applications in the fields of new nano-bio-label materials, drug target delivery materials and future nanodevices owing to their excellent magnetic and luminescent performance. More importantly, the design conception and construction technology are of universal significance to fabricate other bifunctional Janus nanofibers.  相似文献   

4.
Fe3O4/Eu(BA)3phen/polyvinyl pyrrolidone (PVP) magnetic-luminescent bifunctional composite nanofibers have been successfully fabricated based on ferroferric oxide (Fe3O4) nanoparticles (NPs) and europium complexes Eu(BA)3phen (BA = benzoic acid, phen = phenanthroline) via electrospinning technology. The as-prepared samples were characterized by X-ray diffractometry, field-emission scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, fluorescence spectroscopy and vibrating sample magnetometry. The as-prepared Fe3O4/Eu(BA)3phen/PVP composite nanofibers possess good fibrous morphology, and Fe3O4 NPs are evenly dispersed into nanofibers. Under the excitation of 274-nm ultraviolet light, Fe3O4/Eu(BA)3phen/PVP composite nanofibers exhibit red emissions of predominant peaks at 592 and 616 nm, which are respectively attributed to the 5D0 → 7F1 and 5D0 → 7F2 energy levels transitions of Eu3+ ions. The optimum mass percentage of Eu(BA)3phen to PVP is 15 %. The fluorescence intensity of composite nanofibers is decreased when more Fe3O4 NPs were added. The saturation magnetization is increased with the increase of Fe3O4 NPs, indicating that the magnetism of the composite nanofibers can be tuned by adjusting Fe3O4 NPs content. The magnetic-luminescent bifunctional composite nanofibers are expected to apply in the fields of cell separation and biological labeling imaging, etc.  相似文献   

5.
We report a facile and highly-effective method to assemble luminescent–magnetic–electrical tri-functionalities into the special-structured Janus nanofibers. Novel and brand-new flexible special-structured [coaxial nanocable]//[nanofiber] Janus nanofibers synchronously endued with tuned and enhanced luminescent–magnetic–electrical trifunctionality have been prepared via electrospinning technology using a homemade coaxis//monoaxis spinneret for the first time. Each special-structured Janus nanofiber consists of a coaxial nanocable made of Fe3O4/PVP core and Eu(BA)3phen/PVP shell as a half side with luminescent–magnetic bifunctionality and polyaniline (PANI)/PVP nanofiber as the other half side with electrically conductive functionality. The special and novel Janus nanofiber not only can guarantee effective separation of Fe3O4 nanoparticles (NPs) and PANI from rare earth complex, but also ensure the continuity of PANI in the matrix. It is satisfactorily found that the luminescent intensity of the novel special-structured Janus nanofibers respectively reaches up to 10 and 22 times higher than those of counterpart conventional [nanofiber]//[nanofiber] Janus nanofibers and composite nanofibers owing to its peculiar nanostructure. Compared with the counterpart conventional Janus nanofibers of two independent partitions, coaxial nanocable is used as one side of the special-structured Janus nanofiber instead of nanofiber, and three independent partitions are successfully realized in the special-structured Janus nanofiber, thus the interferences among various functions are further reduced, leading to the fact that more excellent multifunctionalities can be obtained. The novel Janus nanofibers possess excellent fluorescence, superparamagnetism and electric conductivity, and further, these performances can be respectively tunable via modulating the respective Eu(BA)3phen, Fe3O4 and PANI contents. The design philosophy and the construction technique for the special-structured Janus nanofibers are of universal significance for the fabrication of other multifunctional Janus nanofiber of various performances.  相似文献   

6.
YF3:Tb3+ hollow nanofibers were successfully fabricated via fluorination of the relevant Y2O3:Tb3+ hollow nanofibers which were obtained by calcining the electrospun PVP/[Y(NO3)3 + Tb(NO3)3] composite nanofibers. The morphology and properties of the products were investigated in detail by X-ray diffraction, scanning electron microscope, transmission electron microscope, and fluorescence spectrometer. YF3:Tb3+ hollow nanofibers were pure orthorhombic phase with space group Pnma and were hollow-centered structure with the mean diameter of 148 ± 23 nm. Fluorescence emission peaks of Tb3+ in the YF3:Tb3+ hollow nanofibers were observed and assigned to the energy levels transitions of 5D4 → 7FJ (J = 6, 5, 4, 3) (490, 543, 588, and 620 nm) of Tb3+ ions, and the 5D4 → 7F5 hypersensitive transition at 543 nm was the dominant emission peak. Moreover, the emitting colors of YF3:Tb3+ hollow nanofibers were located in the green region in CIE chromaticity coordinates diagram. The luminescent intensity of YF3:Tb3+ hollow nanofibers was increased remarkably with the increasing doping concentration of Tb3+ ions and reached a maximum at 7 mol% of Tb3+. The possible formation mechanism of YF3:Tb3+ hollow nanofibers was also discussed. This preparation technique could be applied to prepare other rare earth fluoride hollow nanofibers.  相似文献   

7.
A structure of electrical-luminescent bifunctional bistrand-aligned nanobundles has been successfully fabricated by specially designed parallel spinnerets electrospinning technology. Eu(BA)3phen (BA = benzoic acid, phen = 1,10-phenanthroline) and polyaniline (PANI) were respectively incorporated into polyvinyl pyrrolidone (PVP) and electrospun into bistrand-aligned nanobundles with PANI/PVP as one strand nanofiber and Eu(BA)3phen/PVP as another strand nanofiber. The morphologies and properties of the final products were investigated in detail by scanning electron microscopy, transmission electron microscopy, fluorescence spectroscopy, Hall effect measurement system, and UV–Vis-NIR spectrophotometer. It is found that the as-prepared samples exhibit the nanostructures of bistrand-aligned nanobundles. The mean diameter for individual nanofiber of the bistrand-aligned nanobundles is 180 nm. The [PANI/PVP]//[Eu(BA)3phen/PVP] bistrand-aligned nanobundles possess excellent electrical conduction and luminescent properties. Fluorescence emission peaks of Eu3+ are observed in the [PANI/PVP]//[Eu(BA)3phen/PVP] electrical-luminescent bifunctional bistrand-aligned nanobundles and assigned to 5D0 → 7F0 (581 nm), 5D0 → 7F1 (592 nm), 5D0 → 7F2 (615 nm) energy levels transitions of Eu3+ ions, and the 5D0 → 7F2 hypersensitive transition at 615 nm is the predominant emission peak. The electrical conductivity reaches up to the order of 10?3 S/cm. The electrical conductivity and luminescent intensity of the bistrand-aligned nanobundles can be tunable by adding various amounts of PANI and rare earth complex. The novel [PANI/PVP]//[Eu(BA)3phen/PVP] electrical-luminescent bifunctional bistrand-aligned nanobundles have potential applications in display devices and nanomechanics, etc. owing to their excellent electrical conduction and fluorescence.  相似文献   

8.
Fe3O4/PVP//Tb(BA)3phen/PVP magnetic–photoluminescent bifunctional bistrand aligned composite nanofibers bundles based on Fe3O4 nanoparticles (NPs) and terbium complex Tb(BA)3phen (BA = benzoic acid) were fabricated by employing a parallel axial electrospinning setup and were characterized by X-ray diffraction, field-emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), transmission electron microscopy, fluorescence spectroscopy, and vibrating sample magnetometer. It is found that Fe3O4 NPs were only dispersed into one strand of the bistrand aligned composite nanofibers bundles, but no nanoparticles in the other strand. And the average diameter of the individual strand fiber was 200 ± 25 nm. The bistrand aligned composite nanofibers bundles exhibit strong green emissions under the excitation of 275 nm ultraviolet light, and the 5 D 4 → 7 F 5 hypersensitive transition at 545 nm was the predominant emission peak of Tb3+ ions. The newly obtained bifunctional nanofibers bundles exhibit excellent magnetism and high fluorescence intensity and are expected to apply in biology cell separation, magnetic resonance imaging, drug deliver, and fluorescence immunoassays/imaging.  相似文献   

9.
A new type of magnetic–photoluminescent bifunctional [Fe3O4@Y2O3:Eu3+]/polyvinyl pyrrolidone (PVP) flexible composite nanofibers were successfully prepared via electrospinning through dispersing Fe3O4@Y2O3:Eu3+ core–shell structured nanoparticles (NPs) into the PVP matrix. The structure, morphology, and properties of the flexible composite nanofibers were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), and fluorescence spectroscopy. The diameter of [Fe3O4@Y2O3:Eu3+]/PVP nanofibers is ca. 128.57 ± 36.72 nm. Fluorescence emission peaks of Eu3+ in both Fe3O4@Y2O3:Eu3+ NPs and [Fe3O4@Y2O3:Eu3+]/PVP nanofibers are observed and assigned to the energy levels transitions of 5D0 → 7F0 (580 nm), 5D0 → 7F1 (533, 586, 592, 599 nm), 5D0 → 7F2 (612 nm), and 5D0 → 7F3 (629 nm) of Eu3+ ions. Compared with Fe3O4/Y2O3:Eu3+/PVP nanofibers, [Fe3O4@Y2O3:Eu3+]/PVP nanofibers possess much stronger luminescence. The as-prepared [Fe3O4@Y2O3:Eu3+]/PVP flexible composite nanofibers simultaneously exhibit excellent magnetism and photoluminescent performance. The intensities of magnetism and luminescence of the composite nanofibers can be simultaneously tuned by adjusting the amount of Fe3O4@Y2O3:Eu3+ NPs introduced into the nanofibers. The high performance [Fe3O4@Y2O3:Eu3+]/PVP flexible composite nanofibers have potential applications in bioimaging, cell separation, and future nanomechanics.  相似文献   

10.
In order to develop new-typed multifunctional composite nanofibers, Eu(BA)3phen/PANI/Fe3O4/PVP trifunctional composite nanofibers with photoluminescence, electricity and magnetism have been successfully fabricated via electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of Eu(BA)3phen, polyaniline (PANI) and magnetite Fe3O4 nanoparticles (NPs). X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, fluorescence spectroscopy and Hall effect measurement system are used to characterize the morphology and properties of the obtained composite nanofibers. The results indicate that the trifunctional composite nanofibers possess excellent luminescent, electrical conductivity and magnetic properties. Fluorescence emission peaks of Eu3+ are observed in the Eu(BA)3phen/PANI/Fe3O4/PVP photoluminescent-electrical-magnetism trifunctional composite nanofibers and assigned to the of 5D0 → 7F0 (580 nm), 5D0 → 7F1 (593 nm) of Eu3+, and the 5D0 → 7F2 hypersensitive transition at 615 nm is the predominant emission peak. The electrical conductivity reaches up to the order of 10?3 S/cm. The luminescent intensity, electrical conductivity and saturation magnetization of the composite nanofibers can be tunable by adding various amounts of Eu(BA)3phen, PANI and Fe3O4 NPs. The multifunctional composite nanofibers are expected to possess many potential applications in areas such as electromagnetic interference shielding, microwave absorption, molecular electronics and biomedicine.  相似文献   

11.
A novel color-tunable PVP/[Tb(BA)3phen+Eu(BA)3phen] luminescent composite nanofibers had been fabricated by single axial electrospinning. The morphology and elements components of the as-prepared nanofibers were characterized by field emission scanning electron microscopy and energy dispersive spectroscopy. The luminescent properties were systematically investigated by photoluminescence spectroscopy. The obtained nanofibers had excellent fibrous morphology and smooth surface, and the average diameter was about 200 nm. The novel luminescent composite nanofibers exhibited the green, orange and red fluorescence emission peaks at 490, 545, 592 and 616 nm, which were ascribed to the 5D4 → 7F6 (490 nm) and 5D4 → 7F5 (545 nm) energy transitions of Tb3+ ions, and the 5D0 → 7F1 (592 nm), 5D0 → 7F2 (616 nm) transitions of Eu3+ ions, respectively. The emitting color of the luminescent composite nanofibers could be tuned by adjusting the mass ratio of terbium complexes and europium complexes in a wide color range of red-yellow-green under the excitation of 274-nm single-wavelength ultraviolet light. The color-tunable luminescent composite nanofibers have potential applications in the fields of display panels, lasers and bioimaging.  相似文献   

12.
LaOI:Tb3+ nanomaterials including nanofibers, nanobelts, and hollow nanofibers were successfully synthesized by electrospinning combined with a double-crucible iodination method using NH4I as iodine source for the first time. X-ray diffractometry analysis revealed that LaOI:Tb3+ nanostructures were phase-pure tetragonal structure with space group of P4/nmm. Scanning electron microscopy analysis showed that the diameters of LaOI:Tb3+ nanofibers, hollow nanofibers and the width of nanobelts were respectively 199.5 ± 30, 376.05 ± 48 nm and 5.2 ± 1.3 μm under the 95 % confidence level. The thickness of the tubewall for hollow nanofibers was 40.5 nm and the thickness of LaOI:Tb3+ nanobelts was 154 nm. Photoluminescence (PL) study demonstrated that the LaOI:Tb3+ nanomaterials exhibited the emission peaks located at 485, 544, 583 and 625 nm, which were ascribed to 5D3 → 7F1, 6, 5D4 → 7F5, 5D4 → 7F4 and 5D4 → 7F3 of energy level transitions of Tb3+, respectively. The PL intensity was strongly affected by the Tb3+-doping concentration, and the optimum quenching concentration was 9 %. The luminescence intensity of LaOI:Tb3+ nanofibers was obviously stronger than that of LaOI:Tb3+ hollow nanofibers and nanobelts under the same measuring conditions. Commission Internationale de L’Eclairage (CIE) analysis demonstrated that the luminescence color of LaOI:9 % Tb3+ nanostructures were located in the green region in CIE chromaticity coordinates diagram. The possible formation mechanisms of LaOI:Tb3+ one dimensional nanomaterials were also proposed.  相似文献   

13.
Polyvinyl pyrrolidone (PVP)–PVP/[Y(NO3)3 + Eu(NO3)3] core–sheath composite nanofibers were prepared by coaxial electrospinning, and then Y2O3:Eu3+ hollow nanofibers were synthesized by calcination of the as-prepared composite nanofibers. For the first time, YF3:Eu3+ hollow nanofibers were successfully fabricated by fluorination of the Y2O3:Eu3+ hollow nanofibers via a double-crucible method using NH4HF2 as fluorinating agent. The morphology and properties of the products were investigated in detail by X-ray diffraction, scanning electron microscope (SEM), transmission electron microscope (TEM), and fluorescence spectrometer. YF3:Eu3+ hollow nanofibers were pure orthorhombic phase with space group Pnma and were hollow-centered structure with the mean diameter of 211 ± 29 nm. Fluorescence emission peaks of Eu3+ in the YF3:Eu3+ hollow nanofibers were observed and assigned to the energy levels transitions of 5D0 → 7F1 (587 and 593 nm), 5D0 → 7F2 (615 and 620 nm), and the 5D0 → 7F1 hypersensitive transition at 593 nm was the dominant emission peak. Moreover, the emitting colors of YF3:Eu3+ hollow nanofibers were located in the red region in CIE chromaticity coordinates diagram. The luminescent intensity of YF3:Eu3+ hollow nanofibers was increased remarkably with the increasing doping concentration of Eu3+ ions and reached a maximum at 7 mol% of Eu3+. This preparation technique could be applied to prepare other rare earth fluoride hollow nanofibers.  相似文献   

14.
Terbium doped lanthanum oxybromide (LaOBr:Tb3+) nanoribbons and nanofibers were successfully synthesized by double-crucible bromination of the electrospinning-derived La2O3:Tb3+ nanoribbons and nanofibers using NH4Br powders as the bromine source. The structure and morphology of the samples were investigated by X-ray diffractometry and scanning electron microscopy. The results indicated that LaOBr:Tb3+ nanoribbons and nanofibers were pure tetragonal in structure with space group of P4/nmm. The width of LaOBr:Tb3+ nanoribbons were 2.33 ± 0.33 μm and the diameter of LaOBr:Tb3+ nanofibers was 90.08 ± 15.19 nm. The photoluminescent properties of LaOBr:Tb3+ nanoribbons and nanofibers were also characterized systematically. Under the excitation of 253-nm ultraviolet light, LaOBr:Tb3+ nanostructures exhibit the green emission of predominant peak at 543 nm. The optimum doping molar concentration of Tb3+ ions in the LaOBr:Tb3+ nanoribbons is 5 %. Interestingly, the luminescence intensity of LaOBr:5 %Tb3+ nanofibers is obviously greater than that of LaOBr:5 %Tb3+ nanoribbons under the same measuring conditions. Moreover, the luminescence colors of LaOBr:Tb3+ nanostructures are located in the green region in Commission Internationale de L’Eclairage chromaticity coordinates diagram. The mechanism of double-crucible bromination method was also proposed. This new bromination technique not only can inherit the morphology of rare earth oxides precursor, but also can be used to fabricate pure-phase rare earth oxybromide at low temperature compared with conventional high temperature solid state bromination reaction method. LaOBr:Tb3+ nanostructures are promising nanomaterials for applications in the fields of light display systems and optoelectronic devices.  相似文献   

15.
Trivalent terbium-doped strontium aluminate (SrAl2O4:Tb3+) nanoparticles were synthesized via the sol–gel combustion technique, and the green photoluminescence (PL) and afterglow were evaluated to clarify the afterglow mechanism of SrAl2O4:Tb3+. The green PL of SrAl2O4:Tb3+ with characteristic emissions at 488, 543, 586, and 622 nm indicated that Tb dopant acts as the luminescent center of the PL. Contrarily, the green afterglow of SrAl2O4:Tb3+ was a broadband spectrum with its peak centered at around 520 nm, but no traces of Eu were found in SrAl2O4:Tb3+ phosphors within the detection limit of 1 μg/g. The band structures and density of states of SrAl2O4:Tb3+ were calculated within the framework of density functional theory. Both the ground state of Tb3+ dopant and the trap levels of oxygen vacancy were quantitatively determined in the band gap of SrAl2O4. Our results suggest that the deep electron trap of oxygen vacancy in the host acts as the luminescent center of the green afterglow from SrAl2O4:Tb3+. A possible afterglow mechanism is proposed to shed fresh light on the green afterglow of SrAl2O4:Tb3+.  相似文献   

16.
Tb3+-doped LaOBr nanostructures including nanofibers, nanobelts, and hollow nanofibers were synthesized for the first time via calcinating the electrospun polyvinyl pyrrolidone/[La(NO3)3 + Tb(NO3)3 + NH4Br] composites. X-ray diffraction analysis revealed that LaOBr:Tb3+ nanostructures are tetragonal in structure with space group of P4/nmm. The morphologies and sizes of LaOBr:Tb3+ nanostructures were investigated using scanning electron microscope and transmission electron microscope. Under the excitation of 254-nm ultraviolet light, LaOBr:Tb3+ nanostructures exhibit the green emissions of predominant peak at 543 nm, which is ascribed to 5D4 → 7F5 transition of Tb3+ ions. It is found that the optimum doping concentration of Tb3+ ions in the LaOBr:Tb3+ nanofibers is 3 %. Interestingly, we found that the luminescence intensity of hollow nanofibers is obviously greater than that of nanofibers and nanobelts for LaOBr:Tb3+ under the same measuring conditions. Moreover, the luminescence of LaOBr:Tb3+ nanostructures are located in the green region in Commission Internationale de L’Eclairage chromaticity coordinates diagram. The formation mechanisms of LaOBr:Tb3+ nanofibers, nanobelts, and hollow nanofibers were also proposed. LaOBr:Tb3+ nanostructures are promising nanomaterials for applications in the fields of light display systems and optoelectronic devices.  相似文献   

17.
For the purpose of developing new-typed multifunctional composite nanofibers, novel composite nanofibers with tunable color-electricity bifunctionality have been successfully fabricated via facile one-pot electrospinning technology. The obtained bifunctional composite nanofibers are composed of polyvinyl pyrrolidone (PVP) as the matrix, Tb(BA)3phen and Eu(BA)3phen (BA = benzoic acid, phen = phenanthroline) as luminescence materials and polyaniline (PANI) as conductive material. Scanning electron microscopy, energy dispersive spectrometry, fluorescence spectroscopy and Hall effect measurement system are used to characterize the morphology structure and properties of the [Tb(BA)3phen + Eu(BA)3phen]/PANI/PVP composite nanofibers. The results indicate that the bifunctional composite nanofibers possess excellent photo luminescence and electrical conduction. The emitting color of the luminescent composite nanofibers can be tuned by adjusting the mass ratios of Tb(BA)3phen, Eu(BA)3phen and PANI in a wide color range of red-yellow-green under the excitation of 297-nm single-wavelength ultraviolet light. The electrical conductivity reaches up to the order of 10?4 S/cm. The luminescent intensity and electrical conductivity of the composite nanofibers can be tunable by adding various amounts of Tb(BA)3phen, Eu(BA)3phen and PANI. The bifunctional composite nanofibers are expected to possess many potential applications in areas such as color display, electromagnetic shielding, molecular electronics and biomedicine.  相似文献   

18.
The Ba2P2O7:Tb3+, R (R?=?Eu2+, Ce3+) phosphors were synthesized by use of a co-precipitation method. Crystal phase, excitation and emission spectra of sample phosphors are analyzed by means of XRD and FL, respectively. The emission spectra of Ba2P2O7:Ce3+, Tb3+ phosphors exhibit four linear peaks attributed to the 5D4?→?7FJ (J?=?6–3) transition of Tb3+ while four broad emission bands are observed in the emission spectra of Ba2P2O7:Eu2+, Tb3+ phosphors. The effects of Eu2+ concentration on the luminescent properties of Ba2P2O7:Tb3+, R (R?=?Eu2+, Ce3+) are studied. Ce3+ affects the luminescent properties of Ba2P2O7:Ce3+, Tb3+ phosphors just as the sensitizer. However, Eu2+ is considered both as the sensitizer and the activator in Ba2P2O7:Eu2+, Tb3+ phosphors. The chromaticity coordinates of Eu2+ and Tb3+ co-doped phosphors gather around the white light field with the CCT approximate to 5000 K, indicating that the luminescent property of Ba2P2O7:Eu2+, Tb3+ phosphors may approach to a desired level needed for white LED application.  相似文献   

19.
CoFe2O4 particles were synthesized using metallic nitrates and polyvinylpyrolidone (PVP) using sol–gel method followed by calcination for 2 h at 960 °C. PVP performed as a surfactant and the effect of various concentrations of PVP on the resultant CoFe2O4 powder was studied. The resultant samples were characterized by XRD, TG/DSC, HR-SEM and VSM. X-ray diffraction results indicated the crystalline phase of CoFe2O4 particles and impurity phase of hematite was observed for higher PVP concentrations. SEM images demonstrated the influence of PVP concentration on the size of the particles. By VSM measurements, the variations in magnetic properties with respect to PVP concentration are studied. All the magnetic characteristics H c , M s and M r increased for 6 wt% and 15 wt% of PVP concentration. The CoFe2O4 particles synthesized with the optimum concentration of PVP may be very attractive for potential applications because of their outstanding magnetic properties (M s =81.1 Am2/kg, H c =831 Gauss).  相似文献   

20.
The luminescent europium complex [Eu(TFI)3(Phen)]·CHCl3 (TFI = 2-(2,2,2-trifluoroethyl)-1-indone, Phen = 1,10-phenanthroline) was incorporated into poly(vinylpyrrolidone) (PVP) matrixes and electrospun into nanofibers. The effect of [Eu(TFI)3(Phen)]·CHCl3 on the morphology and luminescence of composite nanofibers has been studied. FT-IR and TGA analyses of the composite nanofibers have been conducted and discussed. Further, the Judd–Ofelt theory is employed to study the effect of the dispersion of [Eu(TFI)3(Phen)]·CHCl3 and the interactions between the [Eu(TFI)3(Phen)]·CHCl3 molecules and neighboring chain segments of PVP. The results suggest that PVP led to the increased polarization degree of Eu3+ ions and significantly enhanced the electronic dipole-allowed transitions of Eu3+ ions, resulting in the enhancement of luminescent efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号