首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
In order to develop new-typed multifunctional composite nanofibers, Eu(BA)3phen/PANI/Fe3O4/PVP trifunctional composite nanofibers with photoluminescence, electricity and magnetism have been successfully fabricated via electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of Eu(BA)3phen, polyaniline (PANI) and magnetite Fe3O4 nanoparticles (NPs). X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, fluorescence spectroscopy and Hall effect measurement system are used to characterize the morphology and properties of the obtained composite nanofibers. The results indicate that the trifunctional composite nanofibers possess excellent luminescent, electrical conductivity and magnetic properties. Fluorescence emission peaks of Eu3+ are observed in the Eu(BA)3phen/PANI/Fe3O4/PVP photoluminescent-electrical-magnetism trifunctional composite nanofibers and assigned to the of 5D0 → 7F0 (580 nm), 5D0 → 7F1 (593 nm) of Eu3+, and the 5D0 → 7F2 hypersensitive transition at 615 nm is the predominant emission peak. The electrical conductivity reaches up to the order of 10?3 S/cm. The luminescent intensity, electrical conductivity and saturation magnetization of the composite nanofibers can be tunable by adding various amounts of Eu(BA)3phen, PANI and Fe3O4 NPs. The multifunctional composite nanofibers are expected to possess many potential applications in areas such as electromagnetic interference shielding, microwave absorption, molecular electronics and biomedicine.  相似文献   

2.
A novel sandwich-type CNTs/Fe3O4/RGO composite with Fe3O4 as a bridge was successfully prepared through a simple solvent-thermal and ultrasonic method. The structure and morphology of the composite have been characterized by Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. This new structure can effectively prevent the agglomeration of GO and the combination of CNTs/Fe3O4 and RGO shows a strong reflection loss (RL) (?50 dB) at 8.7 GHz with absorber thickness of 2.5 mm. Moreover, compared with CNTs/Fe3O4/GO composite, it is found that the thermal treating process is beneficial to enhance the microwave absorption properties, which may be attributed to high conductivity of RGO. On this basis, the microwave absorbing mechanism is systematically discussed. All the data show that the CNTs/Fe3O4/RGO composite exhibits excellent microwave absorption properties with light density and is expected to have potential applications in microwave absorption.  相似文献   

3.
Polyaniline (PANI)/CoFe2O4/Ba3Co2Fe24O41 composite was prepared by an in-situ polymerization method. The phase structure, morphology and magnetic properties of the as-prepared PANI/CoFe2O4/Ba3Co2Fe24O41 composite were characterized by XRD, FT-IR, SEM, TEM, and VSM, respectively. The microwave absorption properties of the composite were investigated by using a vector network analyzer in the 2–18 GHz frequency range. The results show that the maximum reflection loss value of the PANI/CoFe2O4/Ba3Co2Fe24O41 composite reaches ?30.5 dB at 10.5 GHz with a thickness of 3 mm and the bandwidth of reflection loss below ?10 dB reaches up to 1.2 GHz. The excellent microwave absorption properties of the as-prepared PANI/CoFe2O4/Ba3Co2Fe24O41 composite due to the enhanced impedance match between dielectric loss and magnetic loss.  相似文献   

4.
Fe3O4/CNTs nanocomposites, which were prepared by polyol-medium in situ high-temperature decomposition of Fe(acac)3 using PVP as stabilizing agent and modified with SDS, were further decorated with high-quality ZnS nanocrystal via a wet technique in glycol solution. The obtained ZnS/Fe3O4/CNTs nanohybrids were characterized by XRD, FT–IR, Raman microscope, TEM, EDS, XPS, VSM and fluorophotometers. Results indicated that magnetic Fe3O4 nanoparticles and fluorescent ZnS nanocrystal were uniformly dispersed on the surface of CNTs layer-by-layer with PVP and SDS as stabilizing agent and ion-capture agent, respectively. The novel multi-functional nanohybrids exhibit super-paramagnetic properties with a saturation magnetization about 6·795 emu g???1 at room temperature and show a strong emission band at 367 nm with a broad shoulder around 342–483 nm due to the interactions and/or background emissions of Fe3O4 and CNTs. The superparamagnetic and fluorescent properties of obtained products are promising for potential applications in magnetically guided and fluorescence tracing drug delivery systems.  相似文献   

5.
In this work, polyaniline (PANI) nanorods and magnetite (Fe3O4) nanoparticles have been synthesised by using ammonium persulphate as oxidant via in-situ chemical oxidative polymerisation of aniline in presence of excess of organic sulphonic acid. The resulting PANI/Fe3O4 nanocomposites materials were characterised using X-ray diffraction, UV-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, vibrating sampling magnetometer and thermogravimetric analysis. Spectroscopic results indicated the successful formation of PANI/Fe3O4 nanocomposites. As obtained, PANI/Fe3O4 nanocomposites have Fe3O4 particle size in the range of 3.2–7?nm. Morphologies of PANI/Fe3O4 nanocomposites were found to be dependent on the molar ratio of aniline to organic acid. Under certain polymerisation conditions, PANI rods like structures were obtained. PANI/Fe3O4 nanocomposites have superparamagnetism and higher thermal stability.  相似文献   

6.
Fe3O4-reduced graphene oxide-polyaniline (Fe3O4–RGO–PANI) ternary electromagnetic wave absorbing materials were prepared by in situ polymerization of aniline monomer on the surface of Fe3O4–RGO nanocomposites. The morphology, structure and other physical properties of the nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, vibration sample magnetism, etc. The electromagnetic wave absorbing properties of composite materials were measured by using a vector network analyzer. The PANI–Fe3O4–RGO nanocomposites demonstrated that the maximum reflection loss was ?36.5 dB at 7.4 GHz with a thickness of 4.5 mm and the absorption bandwidth with the reflection loss below ?10 dB was up to 12.0 GHz with a thickness in the range of 2.5–5.0 mm, suggesting that the microwave absorption properties and the absorption bandwidth were greatly enhanced by coating with polyaniline (PANI). The strong absorption characteristics of PANI–Fe3O4–RGO ternary composites indicated their potential application as the electromagnetic wave absorbing material.  相似文献   

7.
The hollow polyaniline (PANI) microspheres were prepared by controlling the mass ratio of the aniline to polystyrene (PS) via a template method, and Fe3O4/PANI composite microspheres have been fabricated by blending the hollow PANI microspheres with Fe3O4 magnetic particles. The effects of the mass ratio of aniline/PS on the microwave absorption performances of Fe3O4/PANI microspheres were investigated. It was found that the value of minimum reflection loss (RLmin) of the microspheres were respectively ?14.06, ?22.34 and ?24.3 dB, corresponding to the mass ratio of aniline/PS of 1:1.5, 1:3, and 1:6. In addition, when the mass ratio of aniline/PS was 1:6, with the thickness of 1.5 and 2.0 mm, the bandwidth below ?10dB were respectively 2.48 GHz (15.52–18 GHz) and 4.64 GHz (11.04–15.68 GHz), indicating that the Fe3O4/PANI microspheres could be a potential electromagnetic wave absorbing material in X (8–12 GHz) and Ku (12–18 GHz) bands.  相似文献   

8.
Lightweight composite hollow spheres with conductive and magnetic properties were prepared by using Hollow Glass Spheres (HGS) as substrate. The morphology, composition, conductive, and magnetic properties of the resultant products were characterized by SEM, EDX, XRD, FTIR spectra, conductivity measurement, and vibrating-sample magnetometry. Polyaniline (PANI) were in situ polymerized on HGS with increasing ratios of PANI to HGS, resulting in the enhanced conductivity of HGS/PANI composites from 1.3 × 10−2 S/cm to 4.4 × 10−2 S/cm. Lightweight glass/Fe3O4-PANI composite hollow spheres (HGS/Fe3O4-PANI) with conductivity of 5.4 × 10−3 S/cm and magnetization of 9.25 emu/g were prepared by deposition of Fe3O4 nanoparticles onto HGS via electrostatic adsorption first, and then polymerization of aniline onto HGS/Fe3O4. The glass/PANI-Fe3O4 composite hollow spheres (HGS/PANI-Fe3O4) composed of Fe3O4 as the outmost layer and PANI as the inner layer were prepared for comparison. The conductivity and magnetization of HGS/PANI-Fe3O4 were 1.1 × 10−4 S/cm and 2.61 emu/g, respectively.  相似文献   

9.
The transformation of a suspension of hydronium jarosite, H3O+Fe3(SO4)2(OH)6, into Fe3O4 (magnetite) of pigment quality is described. The process consists in the neutralization of the hydronium jarosite suspension in FeSO4 aqueous solutions with NH3 and subsequent thermal treatment of this mixture at controlled pH and temperature.  相似文献   

10.
Reduced graphene oxide (RGO)/magnetite (Fe3O4) nanocomposite has been synthesized by an in-situ facile hydrothermal method. The XRD pattern reveals the development of nanocomposite in which both phases are coexistent. Raman Spectroscopy shows the main characteristics peaks of D and G bands at 1349 cm?1 and 1595 cm?1 for graphitic structures. The intensity ratio (ID/IG) is also calculated, which indicate the degree of defects in the material. This ratio (ID/IG), increases from 0.84 for GO to 0.91 for RGO/Fe3O4 nanocomposite and promotes the defects which are beneficial for electromagnetic (EM) absorption. The SEM image depicts that, Fe3O4 spherical nanoparticles are dispersed over the surface of graphene sheets and provide a thermal conducting path for heat dissipation between different layers of graphene. The EM absorption properties have been analyzed at 2–18 GHz of RGO and RGO/Fe3O4. The addition of proper content of Fe3O4 magnetic nanoparticles in RGO sheets improved the Reflection Loss (RL) from ??13.5 dB to ??20 dB at a frequency of 9.5 GHz. Moreover, due to magnetic loss and interfacial polarization, the effective bandwidth increases from 2.5 GHz to 3.8 GHz at a coating thickness of 1.5 mm. Hence this light weight nanocomposite is an excellent material for strong EM absorption in X-band.  相似文献   

11.
Magnetite nanoparticles (Fe3O4) and humic acid-coated magnetite nanoparticles (Fe3O4/HA) were prepared by co-precipitation method for cerium ions removal from aqueous solution. The success of preparation in nanoscale was confirmed by x-ray diffraction (XRD) and transmission electron microscopy (TEM). The TEM image shows that the size of Fe3O4 is around 15 nm and the presence of humic acid reduces the magnetite aggregation and stabilizes the magnetite suspension. Adsorption studies with respect to various process variables such as contact time, pH, and temperature were investigated by batch technique. The sorption kinetics and isotherms of Fe3O4 and Fe3O4/HA for Ce (IV) ions show that the sorption kinetics follow the pseudo-second-order and Langmuir isotherm models for both sorbents. The maximum capacities (Qmax) of Ce (IV) onto Fe3O4 and Fe3O4/HA were found to be 160 and 280 mg/g, respectively. The thermodynamic parameters (ΔGo, ΔHo and ΔSo) were calculated, and the results revealed that the sorption process of Ce (IV) ions on both Fe3O4 and Fe3O4/HA are spontaneous, endothermic for Fe3O4 and exothermic for Fe3O4/HA.  相似文献   

12.
The capacity and conductivity deficiencies of TiO2(B) are addressed simultaneously through a smart morphological and compositional design. Elaborately designed hierarchical heterostructures are reported, consisting of carbon‐coated TiO2(B) nanosheets decorated with Fe3O4 nanoparticles, based on a facile self‐assembly strategy. The novel hierarchical heterostructures exhibit a remarkable synergy by bridging the intriguing functionalities of TiO2(B) nanosheets (high safety and durability), Fe3O4 nanoparticles (high theoretical capacity), and carbon coatings (high conductivity), which results in significantly improved cycle and rate performances. A startlingly high reversible capacity of 763 mA h g−1 is delivered at 500 mA g−1 after 200 charging−discharging cycles. Even when the current density is as high as 10 000 mA g−1, the reversible capacity is still up to 498 mA h g−1. This smart morphological and compositional design opens up new opportunities for developing novel, multifunctional hierarchical heterostructures as promising anode materials for next‐generation, high‐power lithium‐ion batteries.  相似文献   

13.
We report the preparation of a processible magnetite/polyaniline (Fe3O4/PANI) nanocomposite, containing dodecylbencensulfonic acid (DBSA) as a surfactant and dopant, with both magnetic and conducting properties. Different amounts of Fe3O4 nanoparticles were successfully disposed with FeCl3 solution to prevent their aggregation in the solution by the application of common ion effect. The magnetic properties of the resulting composites were investigated by a quantum design magnetometer (PMPS). The (Fe3O4/PANI) nanocomposite showed at 300 K no loop of hysteresis indicating the superparamagnetic nature. The saturation magnetization varies from 0.167 to 28.45 emu/g with increasing Fe3O4 content. Zero field cooling (ZFC) and Field cooling (FC) profiles showed that the polyaniline matrix allows each ferrite nanoparticles to behave independently and interparticle interactions are not important for iron oxide content lower than 36 wt.%. The electrical conductivity of composites was found to be higher than that of the pure PANI in spite of the insertion of the insulating material Fe3O4 particles. It is noticeable that conductivity increases with low Fe3O4 particles content and then decreases. Structural characterization by X-ray diffraction (XRD), UV spectroscopy and thermogravimetric analysis (TGA) have been performed.  相似文献   

14.
The magnetite (Fe3O4) nanoparticles were prepared by the co-precipitation of ferrous and ferric salts with NH4OH, and then modified with 3-aminopropyltriethoxysilane (APTES) by silanization reaction and subsequent reaction with glutaraldehyde (GA) to obtain functional groups on their surface. The influence of different terminated groups on protein binding was studied with bare and modified magnetite nanoparticles. Amine terminated magnetite nanoparticles were shown the highest binding ability for immobilization process compared to Fe3O4 NPs and GA bonded NPs. This binding ability was shown by using sodium dodecyl polyacrylamide gel electrophoresis technique (SDS-PAGE). Albumin attached magnetite nanoparticles were also examined by Scanning Electron Microscopy (SEM).  相似文献   

15.
In order to develop new-typed multifunctional composite nanobelts, polymethyl methacrylate (PMMA) is used as the matrix to construct composite nanobelts containing different amounts of Eu(BA)3phen(BA = benzoic acid, phen = phenanthroline), polyaniline (PANI) and Fe3O4 nanoparticles (NPs), and Eu(BA)3phen/PANI/Fe3O4/PMMA trifunctional composite nanobelts with simultaneous photoluminescence, electricity and magnetism have been successfully fabricated via electrospinning technology. The morphology and properties of the obtained composite nanobelts were characterized by X-ray diffractometry, scanning electron microscopy, vibrating sample magnetometry, fluorescence spectroscopy and Hall effect measurement system. The results indicate that the trifunctional composite nanobelts simultaneously possess excellent photoluminescence, electrical conduction and magnetic properties. Fluorescence emission peaks of Eu3+ ions in the composite nanobelts are observed and assigned to the energy levels transitions of 5D0 → 7F0 (580 nm), 5D0 → 7F1 (593 nm) and 5D0 → 7F2 (615 nm) of Eu3+ ions, and the 5D0 → 7F2 hypersensitive transition at 615 nm is the predominant emission peak. The electrical conductivity reaches up to the order of 10?3 S/cm. Furthermore, the luminescent intensity, electrical conductivity and saturation magnetization of the composite nanobelts can be tunable by adjusting amounts of Eu(BA)3phen, PANI and Fe3O4 NPs. The formation mechanism of the composite nanobelts is also proposed. The obtained photoluminescence–electricity–magnetism trifunctional composite nanobelts have potential applications in many areas such as electromagnetic interference shielding, microwave absorption, molecular electronics, biomedicine and future nanomechanics. More importantly, the design concept and construct technique are of universal significance to fabricate other trifunctional naonobelts.  相似文献   

16.
The main properties of epoxy composites reinforced with aligned carbon nanotubes (CNTs) have been studied. The alignment was carried out in a specific designed device applying a weak magnetic field (0.3 T) with permanent magnets. CNTs were modified with magnetite nanoparticles (Fe3O4) functionalized, in a one-stage-process which does not require use of strong acids or aggressive treatments which could affect the structural integrity of CNTs. The study by transmission electron microscopy confirmed that the Fe3O4 nanoparticles were closely bonded over CNT surfaces. The thermo-mechanical and tensile properties of composites measured were higher than neat epoxy resin and were similar for both composites: reinforced with neat CNTs and magnetite–CNT hybrid nanofillers. The electrical behaviour indicates a high anisotropy for aligned composites, showing an increase of one order of magnitude for the electrical conductivity in the direction of aligned nanotubes.  相似文献   

17.
We report low-temperature spin spray deposited Fe3O4/ZnO thin film microwave magnetic/piezoelectric magnetoelectric heterostructures. A voltage induced effective ferromagnetic resonance field of 14 Oe was realized in Fe3O4/ZnO magnetoelectric (ME) heterostructures. Compared with most thin film magnetoelectric heterostructures prepared by high temperature (>600 °C) deposition methods, for example, pulsed laser deposition, molecular beam epitaxy, or sputtering, Fe3O4/ZnO ME heterostructures have much lower deposition temperature (<100 °C) at a much lower cost and less energy dissipation, which can be readily integrated in different integrated circuits.  相似文献   

18.
A simple and quick microwave method to prepare high performance magnetite nanoparticles (Fe3O4 NPs) directly from Fe has been developed. The as-prepared Fe3O4 NPs product was fully characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The results show that the as-prepared Fe3O4 NPs are quite monodisperse with an average core size of 80 × 5 nm. The microwave synthesis technique can be easily modified to prepare Fe3O4/Ag NPs and these NPs possess good magnetic properties. The formation mechanisms of the NPs are also discussed. Our proposed synthesis procedure is quick and simple, and shows potential for large-scale production and applications for catalysis and biomedical/biological uses.  相似文献   

19.
For the treatment of wastewater containing Ag nanoparticles (NPs), PANI/Fe3O4 nanofibers were firstly prepared by a novel self-assemble. And then, the efficiency for the removal of Ag NPs from wastewater was investigated. The magnetic performance of PANI/Fe3O4 nanofibers could be optimized by adjusting the pH of the self-assemblied system. Under pH of 3, the as-prepared nanofibers exhibited the highest magnetism and also displayed good efficiency (>?12 mg g?1) for the removal of Ag NPs. Importantly, the resulted product (PANI/Fe3O4/Ag composite) could act as a catalysis for cleaning durable pollutant, 4-nitrophenol. After 10 cycles, only slight decrease in rate constant was found, indicating excellent reusability. Those approaches provide a new way to merge the recovery of Ag NPs as pollutants and reuse of recovered Ag NPs as recyclable material for environmental remediation.  相似文献   

20.
Hollow glass microspheres/Fe3O4 (HGMs/Fe3O4) composites with low density were successfully synthesized by solvothermal method at 160 °C. The morphology, composition, and microstructure of the samples were characterized by scanning electron microscopy and X-ray diffraction, respectively. The results show that the HGMs/Fe3O4 composites exhibit compact and continuous Fe3O4 particles coating on the surface of HGMs. The complex permeability and permittivity of HGMs/Fe3O4 composites obtained at 160 °C for different reaction times were measured in the frequency range of 1–18 GHz by vector network analysis. The microwave absorption properties were well-elucidated by the traditional coaxial line method. The as-prepared HGMs/Fe3O4 composites show excellent microwave absorption properties. When the thicknesses of these HGMs/Fe3O4 composites are more than 1.5 mm, they all exhibit strong absorption peaks (lower than ?10 dB). A possible mechanism of the improved microwave absorption properties was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号