共查询到18条相似文献,搜索用时 46 毫秒
1.
一种改进的遗传算法及其在TSP中的实现 总被引:4,自引:1,他引:4
TSP问题是典型的NP完全问题,遗传算法是求解NP完全问题的一种方法。文章针对TSP问题.提出了一种改进的遗传算法。在遗传算法中引入进化算法的思想,在此基础上提出顶端培育策略和分阶段策略,以求在保证群体多样性的同时加快收敛速度。在算法的仿真和测试中,改进后的算法明显优于传统的遗传算法。这表明,该算法具有良好的可行性和实用性。 相似文献
2.
TSP的一种改进遗传算法 总被引:6,自引:0,他引:6
旅行商问题(TSP)是研究算法性能的典型算法,具有广泛的应用背景。遗传算法(GA)是由遗传进化理论指导的随机搜索寻优算法。但传统GA的寻优能力与随机搜索能力之间存在着相互制约的关系,所以对地形极其复杂、极无规律的TSP的应用效果并不十分理想。本文通过在传统GA中引入“幼代”及其成长过程,解除了两种能力间的制约关系。实际计算结果表明,求解质量显著提高。 相似文献
3.
一种改进遗传算法及其在TSP问题中的应用 总被引:15,自引:1,他引:15
传统遗传算法的收敛速度与问题解的质量是影响算法寻优性能的一对主要矛盾。文章针对上述矛盾,提高了改进遗传算法的控制策略-杂交,变异的并行处理,基于适应值密度的变异操作,自调整父代迁移策略和父代与子代竞争策略,并应用于TSP问题中,验证了算法的有效性。 相似文献
4.
针对旅行商问题(Travelling Salesman Problem,TSP)的遗传算法的大规模操作,需要大量运算时间而且容易造成局部最优解,提出一种并行混合遗传算法。该方法基于MPI并行环境,利用种群中选择、交叉、变异操作的并行化,将种群中个体平均的分配到处理器中进行操作,有效地避免局部最优解的出现和减少算法的运行时间。实验证明该方法相对于简单遗传算法具有更强全局寻优能力以及耗费更少的操作时间。 相似文献
5.
本文介绍了遗传算法的基本知识,并利用遗传算法解决TSP(旅行商)问题,在此基础上,用免疫遗传算法进行优化对比。 相似文献
6.
一种基于改进遗传算法的TSP问题求解方法 总被引:2,自引:1,他引:1
通过改进经典遗传算法的交叉算子和变异算子,提出了一种改进遗传算法。介绍了该算法的基本步骤及特点,并对TSP问题进行了仿真实验。实验结果表明改进算法有效地提高了算法的收敛速度与寻优质量,在解决TSP问题时表现出良好特性,与经典遗传算法相比具有明显优势。 相似文献
7.
本文提出了一种改进的量子遗传算法,其核心是对量子遗传算法中的量子旋转门的调整策略进行改进。在现有的静态、指数型动态调整策略的基础上提出了基于正弦函数的动态调整策略。文中对旅行商问题(TSP)的仿真实验结果表明:改进后的算法的优化质量和效率都优于遗传算法和一般量子遗传算法。 相似文献
8.
一种改进遗传算法在旅行商(TSP)问题中的应用 总被引:3,自引:0,他引:3
遗传算法(GA)是一种基于自然群体遗传机制的高效搜索算法,由于它在搜索空间中同时考虑许多点。这样就减少了收敛于局极小的可能,同时也增加了处理的并行性。因此,可以利用遗传算法研究典型的组合优化实例-TSP问题的求解问题。本文采用了启发式三交叉算子并提出了一种全新的变异算子,使得收敛速度更快,能更有效的解决TSP问题。 相似文献
9.
一种基于构建基因库求解TSP问题的遗传算法 总被引:23,自引:1,他引:23
传统的遗传算法通常被认为是自适应的随机搜索算法.该文在分析其特点后针对TSP问题提出了一种将建立基因库(Ge)与遗传算法结合起来的新算法(Ge-GA).该算法利用基因库指导种群的进化方向,并在此基础上使用全局搜索算子和局部搜索算子增强遗传算法的“探测”和“开发”能力.Ge-GA算法大大加快了遗传算法的收敛速度和寻优能力.作者测试了TSPLIB中的多个实例(城市数目从70~1577),试验结果与最优解的误差都不超过0.001%.特别是对于难求解的TSP问题,如att532和fl1577,都能够在理想的时间内找到最优解. 相似文献
10.
主要研究了用遗传算法求解TSP问题。阐述了简单遗传算法的设计方法、基本原理和基本步骤。描述了简单遗传算法在TSP问题中的应用现状。根据种群个体的多样性和分布情况,提出了判定遗传算法的截止代数。简单遗传算法具有易于陷入局部最优解、收敛速度慢的特点,针对这些特点,通过改进交叉算子,加入初始化启发信息,提高了遗传算法解的精度和收敛性。 相似文献
11.
求解TSP的一种改进遗传算法 总被引:14,自引:0,他引:14
TSP问题是典型的NP-hard组合优化问题,GA是求解此类问题的一种方法。但它存在如何较快地找到最优解并防止“早熟”收敛的问题。文章针对上述问题并结合TSP问题的特点,提出了改进的遗传算法。它从相似性的思想出发,按适应值相似性将群体分级,在不同的级内采用不同的操作,产生数目不等的新解并利用加速算子使其更接近局部极小值。改进后的算法较好地解决了群体多样性与收敛性的矛盾。实验结果表明,该文算法的改进是有效的。 相似文献
12.
求解TSP问题的一种改进的遗传算法 总被引:33,自引:5,他引:33
TSP问题是典型的NP完全问题,遗传算法是求解NP完全问题的一种理想方法。文章针对解决TSP问题,提出使用改进的遗传算法,即用浓度控制选择策略以保证群体的多样性,用贪婪交叉算子和启发式倒位变异算子来提高算法的收敛速度,较好地解决了群体的多样性和收敛速度的矛盾。算法的分析和测试表明,该文算法的改进是有效的。 相似文献
13.
实际应用中经常用人工智能算法如遗传算法求解TSP等一类NP难题.针对原有的遗传算法在初始化种群随机性的缺陷以及在产生子代过程中无法保存最优个体的问题.给出基于贪心算法的种群初始化和交叉变异后最优个体保存算法相结合的改进遗传算法,并在VC++平台上对该算法的实现过程进行动态演示。 相似文献
14.
一种求解TSP问题的改进蚁群算法 总被引:2,自引:0,他引:2
针对基本蚁群算法存在收敛速度慢,易陷于局部最优解等缺点,提出了一种求解旅行商(TSP)问题的改进蚁群算法.通过在基本蚁群算法中提出保留最优解和引入个体差异策略的改进方法,有效地抑制了算法收敛过程中的停滞现象,提高了全局搜索能力和解的质量.TSPLIB的实例验证了该改进算法的有效性. 相似文献
15.
针对基本蚁群算法存在收敛速度慢,易陷于局部最优解等缺点,提出了一种求解旅行商(TSP)问题的改进蚁群算法。通过在基本蚁群算法中提出保留最优解和引入个体差异策略的改进方法,有效地抑制了算法收敛过程中的停滞现象,提高了全局搜索能力和解的质量。TSPLIB的实例验证了该改进算法的有效性。 相似文献
16.
17.
本文针对遗传算法(GA)早熟收敛问题就GA的交叉算予进行改进,针对模拟退火算法易陷入局部最小值的缺点.使用HFC—ADM(自适应输入阂值的分等级搜索)的SA(模拟退火算法)和改进后的GA相结合,提出了一种求解TSP问题的遗传模拟退火混合算法,并应用于求解TSP(旅行商问题)问题。实验结果表明,该算法具有比传统的GA以及基于HFC—ADM的SA具有更强的全局搜索能力和更快的收敛速度。 相似文献
18.
文章针对TSP问题,运用一种新的巡回路线编码方法和基于个体浓度的群体更新及个体多样性保持策略,提出了一种改进的遗传算法,在解决该类问题上取得了较显著的效果。 相似文献