首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
化学气相沉积制备大面积高质量石墨烯的研究进展   总被引:1,自引:1,他引:0  
石晓东  王伟  尹强  李春静 《材料导报》2017,31(3):136-142
石墨烯是由单层碳原子紧密堆积形成的一种碳质新材料,具有优良的电学、光学、热学及力学等性质。在众多的石墨烯制备方法中,化学气相沉积(Chemical vapor deposition,CVD)最有可能实现大面积、高质量石墨烯的可控制备。综述了CVD方法制备大面积、高质量石墨烯的影响因素,包括衬底、碳源及生长条件(气体流量、生长温度、等离子体功率、生长压强、沉积时间、冷却速率等)。最后展望了CVD方法制备石墨烯的发展方向。  相似文献   

2.
《新材料产业》2013,(3):89-90
据报道,中航工业北京航空材料研究院(以下简称“航材院”)日前宣布,已突破制备大尺寸、高质量石墨烯薄膜的技术难题,掌握了衬底材料表面晶粒定向受控生长和化学气相沉积(CVD)反应气体分压配比等关键专利技术,在铜箔表面制备出超过12英寸的石墨烯薄膜,更大尺寸的石墨烯薄膜制备技术也已突破,近期将批量生产,使大尺寸、高质量石墨烯薄膜的工程化制备成为现实,标志着石墨烯制备进入了“膜时代”。  相似文献   

3.
微波等离子体化学气相沉积(MPCVD)法具有低温生长、基底材料选择广泛、容易掺杂等优点,是大面积、高速率、高质量石墨烯制备的首选。首先通过比较制备石墨烯的几种主要CVD方法得出MPCVD法的优势,然后阐述了MPCVD法制备石墨烯的研究,最后介绍了MPCVD法制备的石墨烯的应用并对MPCVD法制备石墨烯的发展趋势进行了展望。  相似文献   

4.
石墨烯的化学气相沉积法制备   总被引:7,自引:0,他引:7  
化学气相沉积(CVD)法是近年来发展起来的制备石墨烯的新方法,具有产物质量高、生长面积大等优点,逐渐成为制备高质量石墨烯的主要方法.通过简要分析石墨烯的几种主要制备方法(胶带剥离法、化学剥离法、SiC外延生长法和CVD方法)的原理和特点,重点从结构控制、质量提高以及大面积生长等方面评述了CVD法制备石墨烯及其转移技术的研究进展,并展望了未来CVD法制备石墨烯的可能发展方向,如大面积单晶石墨烯、石墨烯带和石墨烯宏观体的制备与无损转移等.  相似文献   

5.
石墨烯的形核和生长动力学过程的控制对于单晶石墨烯的制备有着至关重要的影响。采用低压化学气相沉积(CVD)方法,通过优化生长条件参数,在铜箔衬底上生长出4mm左右的大尺寸单晶石墨烯。通过一系列形貌和结构的表征,证明了样品为高质量的单层单晶石墨烯。同时观察到CVD生长的亚毫米级、A-B型堆垛的多层单晶石墨烯畴,以及由单晶石墨烯共生形成的叠层结构。此外通过采用3种类型的铜箔衬底生长石墨烯,发现铜箔特性如体氧含量等对石墨烯成核密度和单晶石墨烯形貌有重要的影响,并观察到不同类型铜箔的晶面择优取向在CVD生长前后发生不同的转变。最后,利用所生长的大尺度单晶石墨烯制备场效应晶体管,实现高的载流子迁移率。  相似文献   

6.
六方氮化硼(h-BN)二维原子晶体以其独特的结构、优异的性质以及广泛的应用前景引起了人们的普遍关注。高质量h-BN材料的制备是其性质研究与实际应用的前提。机械剥离的h-BN尺寸有限, 普遍采用的化学气相沉积(CVD)技术通常以过渡金属为衬底, 器件应用时需要将h-BN转移到其它衬底上。因此, 在介质衬底上直接生长h-BN成为二维材料研究领域的一个重要发展方向。本文总结了近年来介质衬底(包括: Si基衬底、蓝宝石衬底和石英衬底等)上直接生长h-BN二维原子晶体的主要进展。人们采用CVD、金属有机气相外延法(MOVPE)、物理气相沉积法(PVD)等方法, 通过提高生长温度、衬底表面处理、两步生长等工艺实现了介质衬底上直接生长h-BN。此外, 还介绍了介质衬底上h-BN二维原子晶体的主要应用。  相似文献   

7.
石墨烯是一种由sp~2杂化碳原子组成的二维碳纳米材料。由于其特殊的性质,在世界范围内引起了广泛的关注和研究。化学气相沉积法(CVD)是制备石墨烯最有效、最常用的方法。然而,传统的CVD石墨烯生长温度非常高(1 000℃),这不仅使得石墨烯制备成本高,而且限制了其在某些领域的应用。因此,低温下石墨烯的合成是目前研究者关注的焦点。前驱体类型(气态、液态、固态)和衬底类型(过渡金属、合金、介质衬底)是影响石墨烯合成温度的重要因素。本文将从以上几个方面对低温条件下CVD合成石墨烯的研究结果进行综述。  相似文献   

8.
石墨烯由于其独特的优异性能逐渐成为新材料领域的研究热点。在石墨烯的各类制备方法中,CVD法已然成为大面积石墨烯制备的主流方法。与铜表面形核生长石墨烯相比,钌、铱、镍、钴等过渡金属作为CVD法制备石墨烯的衬底时,其生长机理完全不同于前者。综述了过渡金属表面CVD石墨烯的生长机理,并总结了石墨烯大规模生产和金属催化剂再利用所面临的困难和挑战。  相似文献   

9.
采用化学气相沉积技术(CVD)在铜箔衬底上实现了石墨烯单晶畴的可控生长,并用两步生长法制备了不同单晶畴尺寸的多晶石墨烯连续膜。利用光学显微镜和拉曼光谱仪对石墨烯的形貌和结构进行了表征。通过对转移到SiO2衬底上石墨烯连续膜的霍尔测试发现,石墨烯晶畴尺寸变化对其连续膜的电学性能影响显著。石墨烯连续膜的晶畴尺寸越大,其方块电阻越小,载流子迁移率越高。  相似文献   

10.
开展了化学气相沉积(CVD)法在蓝宝石衬底上直接生长石墨烯的制备研究和模拟研究,研究衬底表面形貌和生长温度对石墨烯的影响。运用原子力显微镜(AFM)、X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、拉曼光谱(Raman)、高分辨透射电子显微镜(HRTEM)等对石墨烯生长开展了微结构研究。模拟研究发现,氢气对衬底表面形貌具有重要影响,在H原子的作用下Al—O键被拉长了51.42%,近乎断裂,因而对蓝宝石衬底的表面粗糙度产生影响。实验发现H_2对蓝宝石衬底有刻蚀作用,刻蚀后的蓝宝石衬底表面粗糙度Ra变大,不易于石墨烯生长。随着生长温度的升高,生长的石墨烯质量也逐渐变好。  相似文献   

11.
A new approach to chemical vapour deposition (CVD) growth of carbon nanotubes (CNTs) using commercial magnetite nanoparticles, avoiding its in situ synthesis, is reported. Commercial magnetite nanoparticles were used as catalyst material to growth multiwalled carbon nanotubes by chemical vapour deposition onto a silicon substrate of several square centimeters in area. It is shown that the application of an alternating electric field during the deposition of catalytical nanoparticles is an effective technique to avoid their agglomeration allowing nanotube growth. Scanning electron microscopy showed that the nanotubes grow perpendicularly to the substrate and formed an aligned nanotubes array. The array density can be controlled by modifying the deposited nanoparticle concentration.  相似文献   

12.
铜基底化学气相沉积石墨烯的研究现状与展望   总被引:1,自引:0,他引:1  
采用粉末包埋法在中国低活性铁素体马氏体钢(RAFM)基底上制备了低活性渗铝层,利用扫描电镜(SEM)和能谱分析(EDS)对渗铝层的形貌和成分进行了分析。结果表明:低活性渗铝层表面铝含量(原子分数)约40%,主要由厚度为15-20μm的FeAl、Fe3-Al及α-Fe(Al)相组成,该渗铝层表面易发生烧结。为避免表面烧结...  相似文献   

13.
An overview of the various sequential steps in a chemical vapour deposition (CVD) process is presented. The overview contains four different parts: basic concepts, the gas phase, reaction mechanisms, and the consequences and use of reactions between the substrate and the vapour. The basic concepts treated are reactor types, reaction zones, rate-limiting steps and control of CVD processes. The gas phase part includes gas flow patterns in CVD reactors, boundary layers and transport processes across them, and calculations of the deposition rates. Reaction mechanisms in CVD are illustrated for silicon CVD from chlorosilanes and for in situ phosphorus doping during silicon growth. Finally aspects of adhesion, introduction of substrate material into the coating and selective growth are discussed in terms of interfacial reactions between the substrate and the vapour.  相似文献   

14.
邓清  肖鹏  熊翔 《材料导报》2007,21(2):5-9
反射镜材料需具有低密度、高弹性模量、高热导率和低热膨胀系数.比较了不同反射镜材料的物理性能和机械性能,与传统光学材料对比,碳化硅具有优越的物理性能和热性能,被认为是轻型反射镜材料的首选.综述了碳化硅反射镜材料常用制备方法的特点.认为反应烧结法和热等静压法适用于制备SiC反射镜基体材料,化学气相沉积法适合用于基体材料增密和制备反射层,反应烧结法结合化学气相沉积工艺是制备SiC反射镜的高效低成本工艺.  相似文献   

15.
Well‐adhered, conformal, thin (<100 nm) coatings can easily be obtained by chemical vapor deposition (CVD) for a variety of technological applications. Room temperature modification with functional polymers can be achieved on virtually any substrate: organic, inorganic, rigid, flexible, planar, three‐dimensional, dense, or porous. In CVD polymerization, the monomer(s) are delivered to the surface through the vapor phase and then undergo simultaneous polymerization and thin film formation. By eliminating the need to dissolve macromolecules, CVD enables insoluble polymers to be coated and prevents solvent damage to the substrate. CVD film growth proceeds from the substrate up, allowing for interfacial engineering, real‐time monitoring, and thickness control. Initiated‐CVD shows successful results in terms of rationally designed micro‐ and nanoengineered materials to control molecular interactions at material surfaces. The success of oxidative‐CVD is mainly demonstrated for the deposition of organic conducting and semiconducting polymers.  相似文献   

16.
采用优化的SLM成形参数,用激光选区熔化(SLM)增材制造技术制备了三维Ni-Cu合金.使用三维Ni-Cu合金基底材料用化学气相沉积法(CVD)制备Ni-Cu合金/石墨烯复合材料,研究了 CVD法生长反应温度对石墨烯结构的影响并分析其原因.结果表明,石墨烯层的厚度随着反应温度的提高而减小.与未生长石墨烯的样品相比,在1...  相似文献   

17.
New Developments in Preparation of Hard Material Coatings by Plasma CVD In this paper, the technique for the preparation of hard material coatings using a D.C. Plasma is described. Two methods are used: One is direct current (D.C.) non-pulsed glow discharge method and the other is pulsed D.C. glow discharge method. It has been shown that the temperature in chemical vapour deposition (CVD) of TiN can be reduced from about 1000°C in conventional CVD to about 500–600°C by the application of a D.C. non-equilibrium plasma. Emphasis is placed on the new design concept for industrial application by using a pulsed D.C. power source and auxiliary heating device. The structures of the TiN coatings obtained at 600 °C are analysed by means of electron microscope and X-ray diffraction methods. The film deposition rate is 1–3 μm/h. It is concluded that plasma assisted CVD of hard material coatings offers a superior alternative to the conventional CVD method.  相似文献   

18.
Since the first development of large‐area graphene synthesis by the chemical vapor deposition (CVD) method in 2009, CVD‐graphene has been considered to be a key material in the future electronics, energy, and display industries, which require transparent, flexible, and stretchable characteristics. Although many graphene‐based prototype applications have been demonstrated, several important issues must be addressed in order for them to be compatible with current complementary metal‐oxide‐semiconductor (CMOS)‐based manufacturing processes. In particular, metal contamination and mechanical damage, caused by the metal catalyst for graphene growth, are known to cause severe and irreversible deterioration in the performance of devices. The most effective way to solve the problems is to grow the graphene directly on the semiconductor substrate. Herein, recent advances in the direct growth of graphene on group‐IV semiconductors are reviewed, focusing mainly on the growth mechanism and initial growth behavior when graphene is synthesized on Si and Ge. Furthermore, recent progress in the device applications of graphene with Si and Ge are presented. Finally, perspectives for future research in graphene with a semiconductor are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号