首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-temperature microstructures of an MgO-hot-pressed Si3N4 and a Yb2O3+ Al2O3-sintered/annealed Si3N4 were obtained by quenching thin specimens from temperatures between 1350° and 1550°C. Quenching materials from 1350°C produced no observable changes in the secondary phases at triple-grain junctions or along grain boundaries. Although quenching from temperatures of ∼ 1450°C also showed no significant changes in the general microstructure or morphology of the Si3N4 grains, the amorphous intergranular film thickness increased substantially from an initial ∼ 1 nm in the slowly cooled material to 1.5–9 nm in the quenched materials. The variability of film thickness in a given material suggests a nonequilibrium state. Specimens quenched from 1550°C revealed once again thin (1-nm) intergranular films at all high-angle grain boundaries, indicating an equilibrium condition. The changes observed in intergranular-film thickness by high-resolution electron microscopy can be related to the eutectic temperature of the system and to diffusional and viscous processes occurring in the amorphous intergranular film during the high-temperature anneal prior to quenching.  相似文献   

2.
In part I of this work, it was found that titanium (Ti) wire encapsulated within mechanically milled alumina powder and sintered at 1350°C forms potentially useful microcavities due to the consolidation of Kirkendall porosity. Here a series of samples sintered at 1350°C in the range 0–24 h has shown the remarkable way in which these cavities form. The cavity has already started in samples quenched from the top of the heating ramp (0 min at 1350°C). It is surrounded by a diffusion zone ∼300 μm in diameter, which does not change size throughout the firing process although the contents change markedly. The diffusion zone microstructure is initially complex with phase sequence TiO2/Al2O3/TiO2+Al2O3/Al2TiO5. Microstructure evolution may be summarized as outward growth of the cavity accompanied by inward growth of the Al2TiO5 resulting in a ∼190-μm-diameter cavity surrounded by a 50-μm-thick layer of Al2TiO5. The formation of the cavity and surrounding microstructure is discussed although some features, such as the nucleation of Al2TiO5 in the part of the diffusion zone furthest from the Ti source and the ring of Al2O3, which persists in between Ti-rich parts of the diffusion zone are still poorly understood.  相似文献   

3.
The Li2O-TiO2 pseudobinary phase diagram was determined from 50 to 100 mol% TiO2 by DTA, microscopy, and X-ray analysis; Li2Ti3O7 effectively melts congruently at 1300° and decomposes eutectoidally at 940°C. A solid solution based on Li2TlO3 from 50 to ∼65 mol% TiO3 was observed to exist at >930°C. A new metastable phase was discovered with a composition of ∼75 mol% TiO2 and with a hexagonal unit cell (8.78 by 69.86 × 10−1nm). Discrepancies in the literature regarding some of these phase equilibria are reconciled.  相似文献   

4.
Two series of experiments were performed to study the experimental conditions for the formation of {111} twins and related microstructures in barium strontium titanate ((Ba, Sr)TiO3). In the first series, the phase equilibria in the BaTiO3–SrTiO3–TiO2 system were determined. XRD and WDS analysis, done in the BaTiO3-rich region, of 45(Ba,Sr)TiO3–10TiO2 samples annealed at 1250°C for 200 h in air showed that (Ba,Sr)TiO3 was in equilibrium with Ba6Ti17O40 (B6T17) and Ba4Ti13O30 phases with strontium solubility (Sr/(Ba + Sr)) of ∼0.02 and 0.20, respectively. In the second series the microstructures of samples consisting of a mixture of (Ba,Sr)TiO3 and 2.0 mol% TiO2, were observed after sintering at 1250°C for 100 h in air. {111} twins formed only in the samples with faceted B6T17 second phase particles, similar to the case of BaTiO3. In these samples, abnormal grain growth occurred in the presence of the {111} twins. In contrast, no {111} twins formed and no abnormal grain growth occurred in the samples containing second phase particles other than B6T17. With an increased substitution of strontium for barium, the aspect ratio of abnormal grains containing {111} twin lamellae was reduced. This result was attributed to a reduction in the relative stability of the {111} planes with the strontium substitution.  相似文献   

5.
The effect of annealing on the wetting behavior of Bi-rich intergranular phases in ZnO:Bi:Co varistors was studied. The intergranular phase exhibits temperature-dependent grain-boundary wetting, with an average equilibrium dihedral angle of 0° at 1140°C and over 55° at 610°C. The temperature-dependent wetting may be related to the temperature dependence of the ZnO concentration in the Bi2O3 liquid phase. The effect of the intergranular phase distribation on the electrical properties of ZnO varistors is discussed.  相似文献   

6.
The phase relations for the Sc2O3-Ta2O5 system in the composition range of 50-100 mol% Sc2O3 have been studied by using solid-state reactions at 1350°, 1500°, or 1700°C and by using thermal analyses up to the melting temperatures. The Sc5.5Ta1.5O12 phase, defect-fluorite-type cubic phase (F-phase, space group Fm 3 m ), ScTaO4, and Sc2O3 were found in the system. The Sc5.5Ta1.5O12 phase formed in 78 mol% Sc2O3 at <1700°C and seemed to melt incongruently. The F-phase formed in ∼75 mol% Sc2O3 and decomposed to Sc5.5Ta1.5O12 and ScTaO4 at <1700°C. The F-phase melted congruently at 2344°± 2°C in 80 mol% Sc2O3. The eutectic point seemed to exist at ∼2300°C in 90 mol% Sc2O3. A phase diagram that includes the four above-described phases has been proposed, instead of the previous diagram in which those phases were not identified.  相似文献   

7.
A series of glasses in the TiO2-SiO2 system was prepared by the flame hydrolysis boule process. Clear glasses containing as much as 16.5 wt% TiO2 were obtained. More TiO2 caused opacity due to phase separation and anatase/rutile crystallization during glass boule formation. Glasses in the 12 to ∼17 wt% TiO2 range were metastable and showed structural rearrangements on heat treatment at temperatures as low as 750CEC (∼200° below the annealing point). These changes were accompanied by large changes in thermal expansion. Thermal treatment can be designed to produce almost any desired expansion between α-200+700=−5 × 10-7/°C and +10 × 10-7/°C. Zero expansion between 0 and 550°C was obtained. Evidence that these changes are due to phase separation and anatase formation is presented. Viscosity data in the glass transition range, refractive index, and density are also presented.  相似文献   

8.
In the system TiO2—Al2O3, TiO2 (anatase, tetragonal) solid solutions crystallize at low temperatures (with up to ∼ 22 mol% Al2O3) from amorphous materials prepared by the simultaneous hydrolysis of titanium and aluminum alkoxides. The lattice parameter a is relatively constant regardless of composition, whereas parameter c decreases linearly with increasing Al2O3. At higher temperatures, anatase solid solutions transform into TiO2 (rutile) with the formation of α-Al2O3. Powder characterization is studied. Pure anatase crystallizes at 220° to 360°C, and the anatase-to-rutile phase transformation occurs at 770° to 850°C.  相似文献   

9.
Ag-sheathed (Bi,Pb)2Sr2Ca2Cu3O, (2223) tapes were made by the oxide-powder-in-tube method. Tapes were heat-treated isothermally at several different temperatures in 7.5% O2/Ar, then quenched into oil to retain the phase assemblages at the reaction temperatures. 2223 formed between ∼810° and ∼837°C. The Avrami equation was applied to describe the kinetics of 2223 formation from a mixture of Bi2Sr2CaCu2O x and nonsuperconducting phases, mainly Ca2PbO4 and CuO. The calculated Avrami exponent, n ∼ 1, indicated that the kinetics in this system could be described as a diffusion-controlled, two-dimensional nucleation and growth process. The apparent activation energy for forming 2223 was ∼2900 kJ/mol from ∼817° to ∼825°C and ∼890 kj/mol from ∼825° to ∼837°C. A temperature-time-transformation diagram was constructed based on the kinetic data; it describes the transformational behavior of this particular system.  相似文献   

10.
The system TiO2-Bi2Ti4O11 was examined by Raman spectroscopy and X-ray diffraction to determine whether TiO2 is soluble in Bi2Ti4O11. The Raman spectral data obtained from preparations made at ∼ 1050°C and cooled to room temperature led us to conclude that TiO2 is not soluble in the "high-temperature" form of Bi2Ti4O11. It was also found that extensive grinding of the phase identified as the "high-temperature" form converts it to the "low-temperature" form, stable below 250°C.  相似文献   

11.
Densifying silicon nitride with a YSiAlON glass additive produced 99% dense materials by pressureless sintering. Subsequent heat-treating led to nearly complete crystallization of the amorphous intergranular phase. Transmission electron microscopy revealed that for heat treatments at 1350°C, only β-Y2Si2O7 was crystallized at the grain boundaries. At a higher temperature of 1450°C, primarily YSiO2N and Y4Si2O7N2 in addition to small amounts of Y2SiO5 were present. Al existed only in high concentrations in residual amorphous phases, and in solid solution with Si3N4 and some crystalline grain-boundary phases. In four-point flexure tests materials retained up to 73% of their strengths, with strengths of up to 426 MPa, at 1300°C. High-strength retention was due to nearly complete crystallization of the intergranular phase, as well as to the high refractoriness of residual amorphous phases.  相似文献   

12.
The effects of liquid-phase sintering aids on the microstructures and PTCR characteristics of (Sr0.2Ba0.8)TiO3 materials have been studied. The grain size of sintered materials monotonically decreases with increasing content of Al2O3–SiO2–TiO2 (AST). The ultimate PTCR properties with ρhtrt as great as 105.61 are obtained for fine-grain (10-μm) samples, which contain 12.5 mol% AST and were sintered at 1350°C for 1.5 h. The quantity of liquid phase formed due to eutectic reaction between AST and (Sr,Ba)TiO3 is presumably the prime factor in determining the grain size of samples. The grains grow rapidly at the sintering temperature in the first stage until the liquid phase residing at the grain boundaries reaches certain critical thickness such that the liquid–solid interfacial energy dominates the mechanism of grain growth.  相似文献   

13.
The ferroelectric phase transition behavior in BaTiO3 was investigated for various annealing times, temperatures, and Ba/Ti ratios by means of a differential scanning calorimeter. Coupling these observations with powder X-ray diffraction and transmission electron microscopy allowed new insights into the barium oxide (BaO)–titanium dioxide (TiO2) phase diagram. The transition temperature was varied systematically with the Ba/Ti ratio at annealing temperatures from 1200° to 1400°C in air. The transition temperature decreased with increasing concentrations of BaO and TiO2 partial Schottky defects, and showed a discontinuous change at the phase boundaries. Beyond the solubility region, two peritectoid reactions were confirmed and revised; first around 1150°C for Ba1.054Ti0.946O2.946→Ba2TiO4+BaTiO3 and second 1250°C for BaTi2O5→Ba6Ti17O40+BaTiO3, respectively. All other regimes of the BaO–TiO2 were found to be consistent with the reported diagrams in the literature.  相似文献   

14.
The sintering properties and microstructure of La1− x A x NbO4 powders ( x =0, 0.005, and 0.02 and A=Ca, Sr, and Ba), prepared by spray pyrolysis have been investigated. Dense materials (>97%) were obtained by conventional sintering at 1200°C and by hot pressing (25 MPa) at 1050°C, respectively. Homogeneous materials were obtained and the average grain size obtained by the two densification methods was ∼2.0 and ∼0.4 μm, respectively, for the 2% doped materials. Pure lanthanum ortho-niobate (LaNbO4) showed a higher degree of grain growth. In the acceptor-doped materials, secondary phases were observed to inhibit grain growth at 1200°C. At 1400°C or higher, molten secondary phases in the Ba-doped materials resulted in severe grain growth, causing microcracking during cooling due to crystallographic anisotropy. A low solubility of AO (A=Ca, Sr, and Ba) in LaNbO4 is inferred from the presence of secondary phases, and 1 mol% solubility of SrO in LaNbO4 was found by electron microprobe analysis. The electrical conductivity in wet hydrogen of the materials demonstrated that the main charge carrier was protons up to 1000°C and reached a maximum value of ∼8·10−4 S/cm at 900°C.  相似文献   

15.
Equilibrium relations in the system NiO–TiO2–SiO2 in air have been investigated in the temperature range 1430° to 1660°C. The most conspicuous feature of the phase relations is the existence of a cation-excess spinel-type phase, in addition to NiO and NiTiO3, on the liquidus surface and at subsolidus temperatures down to 1430°C. Three invariant points have been located on the liquidus. There is a peritectic at 1540°C characterized by coexisting NiO ( ss ), spinel( ss ), cristobalite, and liquid of composition 47 wt% NiO, 29 wt% TiO2, and 24 wt% SiO2. Two eutectics are present, one at 1480°C, with spinel( ss ), NiTiO3, cristobalite, and liquid (42 wt% NiO, 43 wt% TiO2, and 15 wt% SiO2), as the coexisting phases. The other is at 1490°C with NiTiO3, rutile, cristobalite, and liquid (32 wt% NiO, 56 wt% TiO2, and 12 wt% SiO2). A liquid miscibility gap extends across the diagram from the two bounding binary systems NiO–SiO2 and TiO2–SiO2.  相似文献   

16.
Using a multipass extrusion process, continuous porous Al2O3 body (∼41% porosity) was produced and used as a substrate to fabricate continuous porous TiO2/Al2O3 composite membrane. The diameter of the continuous pores of the porous Al2O3 body was about 150 μm. The TiO2 nanopowders dip coated on the continuous pore-surface Al2O3 body existed as rutile and anatase phases after calcination at 520°C in air. However, after aging of the fabricated continuous porous TiO2/Al2O3 composite membrane in 20% NaOH at 60°C for 24 h, a large number of TiO2 fibers frequently observed on the pore surface. The diameter of the TiO2 fibers was about 150 nm having a high specific surface area. However, after 48-h aging period, the diameter of the TiO2 fibers increased, which was about 3 μm. Most of the TiO2 fibers had polycrystalline structure having nanosized rutile and anatase crystals of about 20 nm.  相似文献   

17.
Sintering of Zinc Oxide Doped with Antimony Oxide and Bismuth Oxide   总被引:1,自引:0,他引:1  
The phase change, densification, and microstructure development of ZnO doped with both Bi2O3 and Sb2O3 are studied to better understand the sintering behavior of ZnO varistors. The densification behavior is related to the formation of pyrochlore and liquid phases; the densification is retarded by the former and promoted by the latter. The pyrochlore phase, whose composition is Bi3/2ZnSb3/2O7, appears below 700°C. The formation temperature of the liquid phase depends on the Sb/Bi ratio: about 750°C for Sb/Bi < 1 by the eutectic melting in the system ZnO—Bi2O3, and about 1000°C for Sb/Bi > 1 by the reaction of the pyrochlore phase with ZnO. Hence, the densification rate is determined virtually by the Sb/Bi ratio and not by the total amount of additives. The microstructure depends on the sintering temperature. Sintering at 1000°C forms intragrain pyrochlore particles in ZnO grains as well as intergranular layers, but the intragrain particles disappear at 1200°C by the increased amount of liquid phase, which enhances the mobility of the solid second phase.  相似文献   

18.
The system HfO2-TiO2 was studied in the 0 to 50 mol% TiO2 region using X-ray diffraction and thermal analysis. The monoclinic ( M ) ⇌ tetragonal ( T ) phase transition of HfO2 was found at 1750°± 20°C. The definite compound HfTiO4 melts incongruently at 1980°± 10°C, 53 mol% TiO2. A metatectic at 2300°± 20°C, 35 mol% TiO2 was observed. The eutectoid decomposition of HfO2,ss) ( T ) → HfO2,ss ( M ) + HfTiO34,ssss occurred at 1570°± 20°C and 22.5 mol% TiO2. The maximum solubility of TiO2 in HfO2,ss,( M ) is 10 mol% at 1570°± 20°C and in HfO2,ss ( T ) is 30 mol% at 1980°± 10°C. On the HfO2-rich side and in the 10 to 30 mol% TiO2 range a second monoclinic phase M of HfO2( M ) type was observed for samples cooled after a melting or an annealing above 1600°C. The phase relations of the complete phase diagram are given, using the data of Schevchenko et al. for the 50% to 100% TiO2 region, which are based on thermal analysis techniques.  相似文献   

19.
The high-temperature phase equilibria for the MgO–Nb2O5–TiO2 system have been determined in air and at 1 atm O2. Three isothermal sections, namely 1450°, 1350°, and 1250°C, were determined experimentally. From this, the 1000°C isothermal section was deduced by extrapolation. Throughout each diagram, most compounds were found to have an extended range of solubility, each exhibiting the same substitutional pattern of the combination 1/3(MgNb2)4+ replacing Ti4+. Furthermore, entropic stabilization because of cation mixing is evident for all phases except for the columbite solid solution, in which case the solid solution range decreased with increasing temperature.  相似文献   

20.
Manganese dioxide (α-MnO2) thin films have been explored as a cathode material for reliable glass capacitors. Conducting α-MnO2 thin films were deposited on a borosilicate glass substrate by a chemical solution deposition technique. High carbon activities originated from manganese acetate precursor, (Mn(C2H3O2)2·4H2O) and acetic acid solvent (C2H4O2), which substantially reduced MnO2 phase stability, and resulted in Mn2O3 formation at pyrolysis temperature in air. The α-MnO2 structure was stabilized by Ba2+ insertion into a (2 × 2) oxygen tunnel frame to form a hollandite structure. With 15–20 mol% Ba addition, a conducting α-MnO2 thin film was obtained after annealing at 600–650°C, exhibiting low electrical resistivity (∼1 Ω·cm), which enables application as a cathode material for capacitors. The hollandite α-MnO2 phase was stable at 850°C, and thermally reduced to the insulating bixbyte (Mn2O3) phase after annealing at 900°C. The phase transition temperature of Ba containing α-MnO2 was substantially higher than the reported transition temperature for pure MnO2 (∼500°C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号