首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experience and lessons learned from sewage sludge pyrolysis in Australia.   总被引:3,自引:0,他引:3  
Management of sewage sludge via "publicly acceptable" methods is becoming increasingly difficult, primarily due to health and environmental concerns with respect to reuse of the product in agriculture. Consequently thermal processes are gaining popularity with significantly increased interest being shown in pyrolysis and gasification processes, due to their "non-incineration status". One such process is the ENERSLUDGE technology which has been developed and commercialised by Environmental Solutions International Ltd (ESI). The world's first commercial ENERSLUDGE plant is located at the Subiaco Wastewater Treatment Plant (WWTP) that was handed over to the client, the Water Corporation of Western Australia in June 2001. Extensive design knowledge and operational experience has now been accumulated from this commercial pyrolysis facility and future applications of the technology will benefit immensely from the lessons learned and experience gained from this facility.  相似文献   

2.
In this paper, a novel process for organic acids and nutrient recovery from municipal sludge was introduced and evaluated based on laboratory-scale studies. An economical estimation for its practical application was also performed by mass balance in a full-scale plant (Q=158,000 m3 d(-1)). This novel process comprises an upflow sludge blanket-type high performance elutriated acid fermenter (5d of SRT) for organic acids recovery followed by an upflow-type crystallisation (3 h of HRT) reactor using waste lime for nutrient recovery. In the system, the fermenter is characterised by thermophilic (55 degrees C) and alkaline conditions (pH 9), contributing to higher hydrolysis/acidogenesis (0.18 g VFA(COD) g(-1) VSS(COD), 63.3% of VFA(COD)/COD produced, based on sludge characteristics of the rainy season) and pathogen-free stabilised sludge production. It also provides the optimal condition for the following crystallisation reactor. In the process, the waste lime, which is an industrial waste, can be used for pH control and cation (Ca and Mg) sources for crystallisation reaction. A cost estimation for full-scale application demonstrates that this process has economic benefits (about 67 dollars per m3 of wastewater except for the energy expense) even in the rainy season.  相似文献   

3.
Proof-of-concept has been demonstrated for a process that will utilize nutrients from sludge liquor, natural light, and CO2 from biogas to grow microalgae at wastewater treatment plants. This process will reduce the impact of returning side-streams to the head of the plant. The produced algae will be fed to anaerobic digesters for increased biogas production. Dewatering of anaerobically digested sludge in centrifuges produces reject water with extremely low transmittance of light. A pretreatment procedure was developed that improved light transmittance for reject water from the FREVAR, Norway, wastewater treatment plant from 0.1% T to 77% T (670 nm, 1 cm path). Chlorella sp. microalgae were found to be suitable for growth in this pre-treated reject water. Typical nitrogen removal was 80-90 g N/kg TSS of produced microalgae. The microalgae were successfully harvested by chemically assisted flocculation followed by straining through a 33 microm sieve cloth, achieving up to 99% recovery. Harvested algae were anaerobically co-digested with wastewater sludge. The specific methane gas production (mL CH4/g VS fed) for the algae varied from less than 65% to 90% of the specific methane gas production for the wastewater sludge, depending on digester temperature, retention time and pre-treatment of the algae biomass.  相似文献   

4.
This study focused on the treatment performance of membrane-coupled organic acid fermentor (MOF) with intermittent reciprocal air/ozone backwashing for the keeping of high permeation flux as well as for the effective recovery of dissolved organics from municipal sewage sludge. Intermittent reciprocal air/ozone backwashing was effective for membrane fouling reduction. When MOF was operated under the conditions of pH 5.5, hydraulic retention time (HRT) of 2 days and 20 days of solids retention time (SRT), most favourable fermentation efficiency was attained. Great inhibition for acid producing by intermittent reciprocal air/ozone backwashing was not observed during long-term operation. MOF with intermittent reciprocal air/ozone backwashing is believed to be an effective system for the recovery of organic matter from municipal sewage sludge and membrane fouling reduction.  相似文献   

5.
In this study, feasibility of membrane separation for the removal of indigenous noroviruses (NVs) is evaluated. The indigenous NV gene was never detected from ultrafiltration (UF) permeates of sewage sludge and treated wastewater. Indigenous NV gene was also not detected from permeates of sewage sludge and treated wastewater by microfiltration (MF) with a pore size of 0.1 microm (MF0.1). Even though the pore size of MF (0.1 microm) was much larger than the diameter of virus particle (approximately 30-40nm), more than 4-log10 reduction value (LRV) at maximum was achieved by membrane separation with MF0.1. NV genes were often detected from permeates of sewage sludge and treated wastewater by MF with a pore size of 0.45 microm (MF0.45), although the maximum log10 reduction values were more than 3.59 for sewage sludge and more than 2.90 for treated wastewater. It is important to verify factors determining the removal efficiency of viruses with MF membranes.  相似文献   

6.
Due to the depletion of mineral phosphorus resources there is an increasing demand for efficient phosphorus recovery technologies. In this study the potential of nanofiltration to recover phosphorus from pre-treated sewage sludge is investigated. The efficiency of three commercial nanofiltration membranes (Desal 5DK, NP030; MPF34) was tested using model solutions. Desal 5DK showed the best selectivity for phosphorus. A pH of lower than 1.5 was found to be most suitable. Desal 5DK was used on four different sewage sludge ash eluates and on one sewage sludge. In these experiments it was shown that a separation of phosphorus from undesired components such as heavy metals was possible with significant variations in the efficiency for the different ash and sludge types. Additionally the achievable product recovery was investigated with model solutions. A product recovery of 57.1% was attained for pH 1 and 41.4% for pH 1.5.  相似文献   

7.
This paper shows the potential application of a new sewage treatment process with technologies of excess sludge reduction and phosphorus recovery. The process incorporated ozonation for excess sludge reduction and crystallisation process for phosphorus recovery to a conventional anaerobic/oxic (A/O) phosphorus removal process. A lab-scale continuous operation experiment was conducted with the ratio of sludge flow rate to ozonation tank of 1.1% of sewage inflow under 30 to 40 mgO3/gSS of ozone consumption and with sludge wasting ratio of 0.34% (one-fifth of a conventional A/O process). Throughout the operational experiment, a 60% reduction of excess sludge production was achieved in the new process. A biomass concentration of 2300 mg/L was maintained, and the accumulation of inactive biomass was not observed. The new process was estimated to give a phosphorus recovery degree of more than 70% as an advantage of excess sludge reduction. The slight increase in effluent COD was observed, but the process performance was maintained at a satisfactory level. These facts demonstrate an effectiveness of the new process for excess sludge reduction as well as for phosphorus recovery.  相似文献   

8.
It was found that aerobic strategies combined with multiple nutrient limitations produced greater quantities of polyhydroxyalkanoates (PHAs) than strategies relying on oxygen limitation (either microaerophilic or anaerobic/aerobic). This was true both for a synthetic wastewater composed of acetic and propionic acid, and also for a nutrient deficient industrial wastewater. PHA/substrate yields were shown to be comparable to axenic systems for many operating strategies analyzed, and it was found that PHA composition could be affected by process operational conditions. The molecular weight and melting point of the PHA produced were found to be in a desirable range with respect to material properties, which have not been well studied in the previous literature for mixed cultures (Salehizadeh and Van Loodsrecht, 2004). The effects of process staging, multiple treatment cycles, and inocula source were also addressed.  相似文献   

9.
This research is part of the Sewer Mining project aimed at developing a new technological concept by extracting water from sewage by means of forward osmosis (FO). FO, in combination with a reconcentration system, e.g. reverse osmosis (RO) is used to recover high-quality water. Furthermore, the subsequent concentrated sewage (containing an inherent energy content) can be converted into a renewable energy (RE) source (i.e. biogas). The effectiveness of FO membranes in the recovery of water from sewage has been evaluated. Stable FO water flux values (>4.3 LMH) were obtained with primary effluent (screened, not treated) used as the feed solution. Fouling of the membrane was also induced and further investigated. Accumulated fouling was found to be apparent, but not irreversible. Sewer Mining could lead to a more economical and sustainable treatment of wastewater, facilitating the extraction of water and energy from sewage and changing the way it is perceived: not as waste, but as a resource.  相似文献   

10.
Membrane-coupled anaerobic digestion utilizes a concept of simultaneous sludge digestion and thickening. Membranes may successfully be applied to eliminate the need for thickening polymers and avoid their likely inhibitory effect on anaerobic biomass. A 550 L completely mixed anaerobic digester was operated under mesophilic conditions (35 degrees C). Two ultrafiltration membrane systems were evaluated for their potential in membrane-coupled anaerobic digestion: vibrating and cross flow. A volatile solids reduction of 590% was achieved at an average mixed liquor suspended solids concentration of 1.8%. The substrate utilization rate was 1.3 d(-1). The vibrating membrane operated at a flux of 1.6-2.0 m3/m2-d and the tubular membrane fluxes in the range 3.4-3.6 m3/m2-d.  相似文献   

11.
High content of heavy metals and presence of pathogens in the dewatered sewage sludge have been the main obstacles for land application of sewage sludge-made fertilizer. The aim of this study was to examine the effects of the innovative electrokinetic (EK) technology on removal of heavy metals from sewage sludge, on the reduction of pathogens, and on sludge chemical characteristics. The results showed that the removal efficiencies for Zn, Cu, Ni, Cr, As and Pb were 94.9%, 95.4%, 89.7%, 67.8%, 31.2% and 18.7%, respectively. Acidification pretreatment of the dewatered sludge for 29 h decreased the content of heterotrophic bacteria from 1.5 x 10(8) c.f.u./g of wet sludge to 1.1 x 10(4) c.f.u./g of wet sludge. Although the initial content of total coliforms and fecal coliforms in sewage sludge were 5.8 x 10(5) c.f.u./g of wet sludge and 4.0 x 10(5) c.f.u./g of wet sludge, respectively, no viable cells were detected. Minor losses of K and N were detected, but the loss of P was found to be significant in EK treated sewage sludge. The treated sludge was technically considered as very stable based on the carbon dioxide evolution rate.  相似文献   

12.
The winery and distillery wastes (grape stalk and marc (GS and GM, respectively), wine lees (WL) and exhausted grape marc (EGM)) are produced in great amounts in the Mediterranean countries, where their treatment and disposal are becoming an important environmental problem, mainly due to their seasonal character and some characteristics that make their management difficult and which are not optimised yet. Composting is a treatment widely used for organic wastes, which could be a feasible option to treat and recycle the winery and distillery wastes. In this experiment, two different piles (pile 1 and 2) were prepared with mixtures of GS, GM, EG and sewage sludge (SS) and composted in a pilot plant by the Rutgers static pile composting system. Initially, GS, GM and EGM were mixed, the pile 1 being watered with fresh collected vinasse (V). After 17 days, SS was added to both piles as a nitrogen and microorganisms source. During composting, the evolution of temperature, pH, electrical conductivity, total organic C, total N, humic acid-like C and fulvic acid-like C contents, C/N ratio, cation exchange capacity and germination index of the mixtures were studied. The addition of V in pile 1 produced higher values of temperature, a greater degradation of the total organic C, higher electrical conductivity values and similar pH values and total N contents than in pile 2. The addition of this effluent also increased the cation exchange capacity and produced a longer persistence of phytotoxicity. However, both piles showed a stabilised organic matter and a reduction of the phytotoxicity at the end of the composting process.  相似文献   

13.
This paper presents energy balances for various digestion systems, which include single mesophilic digestion, single thermophilic digestion, two-stage thermophilic-mesophilic digestion system and systems at elevated solids content in sludge. On the basis of a sludge flow containing 30 tons TS/day (equivalent to a 100 ML/d WWTP plant) it was shown that a two-stage thermophilic-mesophilic digestion system generated more available energy than single mesophilic digestion and single thermophilic digestion systems. Sludge thickening offered the greatest amount of available energy; however that energy surplus was offset by the cost of thickening. After the cost of thickening was converted into equivalent energy units it was shown that the price of energy is important in calculation of equivalent energy units related to operation of the thickening plant. Sludge thickening may be beneficial from energy view point compared to conventional mesophilic digestion when price of energy exceeds dollars 0.08 CAN kW-hr.  相似文献   

14.
The production of small amounts of well-stabilized biological sludge is one of the main advantages of upflow anaerobic sludge bed (UASB) reactors over aerobic wastewater treatment systems. In this work, sludge produced in three pilot-scale UASB reactors used to treat sewage under subtropical conditions was assessed for both stability and specific methanogenic activity. Stability of primary sludge from settling tanks and digested sludge from conventional sludge digesters was also measured for comparison purposes. Kinetic parameters like the hydrolysis rate constant and the decay rate constant were calculated. High stability was observed in sludge from UASB reactors. Methanogenic activity in anaerobic sludges was relatively low, probably due to the low organic matter concentration in influent sewage. Knowledge on sludge growth rate, stability, and activity might be very useful to optimize sludge management activities in full-scale UASB reactors.  相似文献   

15.
Dynamic of lead speciation in sewage sludge composting.   总被引:5,自引:0,他引:5  
A large-scale sewage sludge composting experiment was conducted to develop an understanding of changes that occur to Pb chemical speciation, distribution and bio-availability during the course of composting. The four-stage Tessier sequential extraction method was employed to investigate the dynamics of heavy metal Pb speciation (exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter and sulphides, residual) during the course of sewage sludge composting. The concentrations of the total Pb and the five Pb fractions concentrations were increased during the whole stage of compost. However, the percentages of Pb distribution with respect to total Pb were changed in the following manner: exchangeable, bound to Fe-Mn oxides and bound to carbonates Pb with respect to total Pb were increased, while the percentages of bound to organic matter and sulphides, and residual Pb with respect to total Pb were decreased during composting. The data showed that the quantity of Pb in the less toxic portion, such as consisting of organic matter and sulphides bound and residual Pb, was increased, and that the contamination and bio-availability of heavy metal Pb in sewage sludge was reduced during the composting process.  相似文献   

16.
The large amount of unutilised pineapple wastes produced every year in tropical countries, particularly in Thailand, adds to the existing environmental pollution problems of the country. This study investigated the utilisation of pineapple wastes to treat another form of waste (sludge) from wastewater treatment facilities in Thailand. Laboratory scale studies were carried out to determine the potential of using naturally fermented raw liquid from pineapple wastes as a source of citric acid in the extraction of Cr, Cu, Pb, Ni and Zn from anaerobically digested sewage sludge. Results of the leaching study revealed its effectiveness in extracting Zn (at 92%) at pH 3.67 and a short leaching time of only 2 h, and Ni at almost 60% removal at the same leaching time. Chromium removal was also high at almost 75% at a longer leaching time of 11 days. Variation in metal removal efficiencies may also be attributed to the forms of metals in sludge, with metals predominantly in the exchangeable and oxidisable phases showing ease of leachability (such as Zn). Compared to citric acid, at pH approaching 4.0, naturally fermented raw liquid seemed to be more effective in the removal of Zn and Cu at the same leaching time of 2 h, and Cr at a longer leaching time of 11 days. The pineapple pulp, which is a by-product of the process, can still be used as animal feed because of its high protein content.  相似文献   

17.
A submersible microbial fuel cell (SMFC) was utilized to treat sewage sludge and simultaneously generate electricity. Stable power generation (145 +/- 5 mW/m2, 470 omega) was produced continuously from raw sewage sludge for 5.5 days. The maximum power density reached 190 +/- 5 mW/m2. The corresponding total chemical oxygen demand (TCOD) removal efficiency was 78.1 +/- 0.2% with initial TCOD of 49.7 g/L. The power generation of SMFC was depended on the sludge concentration, while dilution of the raw sludge resulted in higher power density. The maximum power density was saturated at sludge concentration of 17 g-TCOD/L, where 290 mw/m2 was achieved. When effluents from an anaerobic digester that was fed with raw sludge were used as substrate in the SMFC, a maximum power density of 318 mW/m2, and a final TCOD removal of 71.9 +/- 0.2% were achieved. These results have practical implications for development of an effective system to treat sewage sludge and simultaneously recover energy.  相似文献   

18.
A new process configuration combining anaerobic digestion with ozonation, and operated at long SRT, was studied with the objective of on-site reduction in sludge quantity and improving biogas recovery. The process performance with respect to solid reduction efficiency and other important process parameters like accumulation of inorganic solids, changes in sludge viscosity and dewatering characteristics were evaluated from the data of long term pilot scale continuous experiments conducted using a mixture of primary and secondary municipal sewage sludge. Due to sludge ozonation and long SRT, high VSS degradation efficiency of approximately 80% was achieved at a reactor solid concentration of 6.5%. A high fraction of inorganic solid (>50%) consisting mainly of acid insoluble and iron compounds was found to accumulate in the reactor. The high inorganic content accumulated in the digested sludge did not, however, contribute to the observed increase in sludge viscosity at high solid concentration. The sludge viscosity was largely found to depend on the organic solid concentration rather than the total solid content. Moreover, higher inorganic content in the digested sludge resulted in better sludge dewaterability. For a quick assessment of the economic feasibility of the new process, an economic index based on the unit cost of digested sludge disposal to unit electric cost is proposed.  相似文献   

19.
Source-separated black water (BW) (toilet water) containing 38% of the organic material and 68% of the phosphorus in the total household waste (water) stream including kitchen waste, is a potential source for energy and phosphorus recovery. The energy recovered, in the form of electricity and heat, is more than sufficient for anaerobic treatment, nitrogen removal and phosphorus recovery. The phosphorus balance of an upflow anaerobic sludge blanket reactor treating concentrated BW showed a phosphorus conservation of 61% in the anaerobic effluent. Precipitation of phosphate as struvite from this stream resulted in a recovery of 0.22 kgP/p/y, representing 10% of the artificial phosphorus fertiliser production in the world. The remaining part of the phosphorus ended up in the anaerobic sludge, mainly due to precipitation (39%). Low dilution and a high pH favour the accumulation of phosphorus in the anaerobic sludge and this sludge could be used as a phosphorus-enriched organic fertiliser, provided that it is safe regarding heavy metals, pathogens and micro-pollutants.  相似文献   

20.
Due to the hydrophobic nature of the polyaromatic hydrocarbons (PAHs) they are mostly bound to the sludge and escape aerobic treatment in a wastewater treatment plant. They therefore proceed directly to the anaerobic post treatment, terminate in the sludge, and can be released to the environment if land spreading is used. PAH degradation in anaerobic methanogenic systems has only recently been shown to occur. In this study we have assessed several factors of anaerobic PAH degradation by evaluating thermodynamic feasibility of degradation, assessing degradation at different temperatures, and investigating the enriched cultures using fluorescent in-situ hybridization (FISH). Thermodynamic calculations indicated that PAH degradation was possible under methanogenic conditions, in the presence of hydrogen utilizing methanogens. Removal of naphthalene and 1-methyl naphthalene depended both on temperature and the initial inoculum. Inocula sourced from contaminated land sites were the most effective. The enrichments were all a mixture of Bacteria, and Archaea, and the Archaea were generally identified as Methanobacteriales, using an order-specific probe. The bacteria were not specifically identified. The results indicate a syntrophic culture, with the bacteria oxidizing the naphthalene, and the Archaea converting the hydrogen produced by oxidation, to methane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号