首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palma G  Freer J  Baeza J 《Water research》2003,37(20):4974-4980
Pinus radiata bark and tannins, chemically modified with an acidified formaldehyde solution were used for removing metal ions from aqueous solutions and copper mine acidic residual waters. The adsorption ability to different metal ions [V(V), Re(VII), Mo(VI), Ge(IV), As(V), Cd(II), Hg(II), Al(III), Pb(II), Fe(II), Fe(III), Cu(II)] and the factors affecting their removal from solutions were investigated. Effect of pH on the adsorption, desorption, maximum adsorption capacity of the adsorbents, and selectivity experiments with metal ion solutions and waste waters from copper mine were carried out. The adsorbents considerably varied in the adsorption ability to each metal ion. The adsorption depends largely upon the pH of the solution. Modified tannins showed lower adsorption values than the modified bark. For the same adsorbent, the maximum capacity at pH 3 for the different ions were very different, ranging for modified bark from 6.8 meqg−1 for V to 0.93 meqg−1 for Hg. Waste waters were extracted with modified bark as adsorbent and at pH 2. The ions Cu(II) (35.2 mgL−1), Fe(III) (198 mgL−1), Al(III) (83.5 mgL−1) and Cd(II) (0.15 mgL−1) were removed in 15.6%, 46.9%, 83.7% and 3.3%, respectively, by using 1 g of adsorbent/10 mL of waste water. In general, a continuous adsorption on a packed column gave higher adsorbed values than those observed in the batchwise experiment.  相似文献   

2.
Horsfall M  Abia AA 《Water research》2003,37(20):4913-4923
The sorption of two divalent metal ions, Cd(II) and Zn(II), onto untreated and differentially acid-treated cassava waste biomass over a wide range of reaction conditions was studied at 30°C. The metal ion removal from the spent biomass was also measured. The batch experiments show that pH 4.5–5.5 was the best range for the sorption of the metal ions for untreated and acid-treated biomass. Time-dependent experiments for the metal ions showed that for the two metals examined, binding to the cassava waste biomass was rapid and occurred within 30 min and completed within 1 h. High sorption capacities were observed for the two metals. The binding capacity experiments revealed the following amounts of metal ions bound per gram of biomass: 86.68 mg/g Cd, 55.82 mg/g Zn and 647.48 mg/g Cd, 559.74 mg/g Zn for untreated and acid-treated biomass, respectively. It was further found that the rate of sorption was particle-diffusion controlled, and the sorption rate coefficients were determined to be 2.30×10−1 min−1 (Cd2+), 4.0×10−3 min−1 (Zn2+) and 1.09×10−1 min−1 (Cd2+), 3.67×10−2 min−1 (Zn2+) for 0.5 and 1.00 M differential acid treatment, respectively. Desorption studies showed that acid treatment inhibited effective recovery of metal ions already bound to the biomass as a result of stronger sulfhydryl-metal bonds formed. Less than 25% of both metals were desorbed as concentration of acid treating reagent increases. However, over 60% Cd and 40% Zn were recovered from untreated biomass during the desorption study. The results from these studies indicated that both untreated and acid-treated cassava waste biomass could be employed in the removal of toxic and valuable metals from industrial effluents.  相似文献   

3.
The complexing capacity of some drinking waters for aluminium(III) and copper(II) is determined by a ligand titration with metal ions based on the use of complexing resins. The resins used in the titration are the iminodiacetic resin Chelex 100, the carboxylic resin Amberlite CG50 and the anionic exchange resin AG1X8. They allow the detection of ligands forming complexes of different stability with the metal ions used for the titration, since they have different sorbing properties. After equilibration with the resin, the concentration of the free metal ion in solution is evaluated from the concentration of sorbed metal ion and from the quantity K*, which is the ratio of the concentration of the metal ion sorbed on the resin to the free metal ion in solution. It strongly depends on the conditions, but it can be evaluated, at the considered conditions, from the sorption equilibria of the metal ion on the resin. The concentration of the ligands in solution and the conditional stability constant are obtained from the Ruzik linearization procedure. Very strong ligands of copper(II) and aluminium(III) were detected in a tap water sample at concentrations ranging from 10−7 to 10−6 mol kg−1, and forming complexes having conditional complexation constants KcI=2.3×1017 (pH=6.77) and 4.5×1016 (pH=6.24), respectively, for copper(II) and aluminium(III). Weaker ligands were detected using the less strongly sorbing resins Amberlite CG50 and AG1X8, but at a concentration equal to that of the strong ligands. This was ascribed to the presence of competing metals in solution, not sorbed by the weak resins. Two other drinking waters had completely different complexing properties both towards copper(II) and aluminium(III), containing much weaker ligands.  相似文献   

4.
Fly larva shells (FLS) are formed as a side product in the biological treatment of organic wastes, and chitin and chitosan produced from the FLS have been used as sorbents for heavy-metal ions. Sorbents are characterised by FT-IR measurements and pH-potentiometric titration and by determination of their surface area, and the content of main elements (C, N, P, S) and ashes. Free metal ions are sorbed best (up to 0.5-0.8 mmol g(-1)) onto chitin and chitosan. The sorption ability for free metal ions of chitin decreases in the order Fe(III) > Cu(II) (Pb(II) > Zn(II). > Ni(II) > Mn(II) and that of chitosan decreases in the order Cu(II) > Mn(II) > Ni(II) > Zn(II) > Pb(II) > Fe(III). The complexed metal ions are sorbed by the FLS up to 0.2-0.4mmol g(-1). The sorption ability for metal ions and ligands depends on pH, concentration of complexed metal ions and the ligand species in the solution. Glycine has the retarding effect on the sorption of Ni(II) and Cu(II) ions, and EDTA enhances the Cu(II) ion sorption. Ni(II) and glycine sorption obeyed the Langmuir isotherm. The observed sorption data show the promising potentialities of the FLS for the heavy-metal removal from the solutions, containing strong complexing agents. Mechanisms for the removal of free and complexed metal ions by chitin, chitosan and the FLS have been discussed.  相似文献   

5.
Li L  Liu F  Jing X  Ling P  Li A 《Water research》2011,45(3):1177-1188
Adsorptive properties for Cu (II), Pb (II) and Cd (II) onto an iminodiacetic acid (IDA) chelating resin were systematically investigated at the optimal pH-value in both single and binary solutions using batch experiments. The Langmuir isotherm model and the pseudo second-order rate equation could explain respectively the isotherm and kinetic experimental data for sole-component system with much satisfaction. The maximum adsorption capacity in single system for Cu (II), Pb (II) and Cd (II) was calculated to be 2.27 mmol/g, 1.27 mmol/g and 0.65 mmol/g individually. The initial adsorption rate followed the order as Cu (II) > Pb (II) > Cd (II) at the fixed initial concentration, and for each metal the initial sorption rate increased as the initial concentration increased. In addition, the modified Langmuir model could describe the binary competitive adsorption behavior successfully, with which the interaction coefficient was obtained to follow the order as Cu (II) < Pb (II) < Cd (II). Furthermore, in every case of the investigated three binary systems, the reduction in both the uptake amounts and distribution coefficients testified the antagonistic competitive phenomena. Obviously, this novel IDA-chelating resin possessed of a good selectivity toward Cu (II) over Pb (II) and Cd (II) for the obtained highest separation factor values were up to 21.30 and 133.91 in the range of tested. This interaction mechanism between the favorable component and other metal ions could mainly contribute to the direct displacement impact which be herewith illustrated schematically.  相似文献   

6.
Diniz V  Volesky B 《Water research》2005,39(1):239-247
Biosorption of the lanthanides: Lanthanum (La(3+)), Europium (Eu(3+)) and Ytterbium (Yb(3+)) from single-component and multi-component batch systems using Sargassum polycystum Ca-loaded biomass was studied. The ion exchange sorption mechanism was confirmed by the release of calcium ions from the biomass that matched the total number of metal and protons removed from the solution. The metal binding increased with pH due to the decrease of proton concentration in the system, as they also compete for the binding sites. The maximum metal uptake capacity for pH 3, 4 and 5 ranged approximately between (0.8-0.9) mmol g(-1) for La (0.8-0.9) mmol g(-1) for Eu, and (0.7-0.9) mmol g(-1) for Yb. Biosorption from multi-component mixtures was examined at pH 4 using equimolar initial concentrations of the metals. The metal affinity sequence established was Eu>La>Yb, and the maximum metal uptake obtained was 0.29, 0.41, 0.28 mmol g(-1) for La, Eu and Yb, respectively.  相似文献   

7.
The present study developed a polymer-based hybrid sorbent (HFO-001) for highly efficient removal of heavy metals [e.g., Pb(II), Cd(II), and Cu(II)] by irreversibly impregnating hydrated Fe(III) oxide (HFO) nanoparticles within a cation-exchange resin D-001 (R-SO3Na), and revealed the underlying mechanism based on X-ray photoelectron spectroscopy (XPS) study. HFO-001 combines the excellent handling, flow characteristics, and attrition resistance of conventional cation-exchange resins with the specific affinity of HFOs toward heavy metal cations. As compared to D-001, sorption selectivity of HFO-001 toward Pb(II), Cu(II), and Cd(II) was greatly improved from the Ca(II) competition at greater concentration. Column sorption results indicated that the working capacity of HFO-001 was about 4-6 times more than D-001 with respect to removal of three heavy metals from simulated electroplating water (pH ∼4.0). Also, HFO-001 is particularly effective in removing trace Pb(II) and Cd(II) from simulated natural waters to meet the drinking water standard, with treatment volume orders of magnitude higher than D-001. The superior performance of HFO-001 was attributed to the Donnan membrane effect exerted by the host D-001 as well as to the impregnated HFO nanoparticles of specific interaction toward heavy metal cations, as further confirmed by XPS study on lead sorption. More attractively, the exhausted HFO-001 beads can be effectively regenerated by HCl-NaCl solution (pH 3) for repeated use without any significant capacity loss.  相似文献   

8.
Ma W  Tobin JM 《Water research》2003,37(16):3967-3977
Biosorption of Cr(3+), Cu(2+) and Cd(2+) from binary metal solutions onto peat in the batch systems was investigated at pH 4. The order of maximum uptake was Cr>or=Cu>Cd and maximum uptake levels of ca. 0.4 mmol/g were observed for chromium and copper while cadmium was taken up to a maximum of ca. 0.2 mmol/g. Co-ion competition resulted in up to 70 percent decrease of primary metal uptake. A novel approach to multicomponent sorption modelling involving regression to the total metal taken up was adopted. Two extended Langmuir-type models were found to exhibit good fit to the experimental data. Using the simpler model of these, three-dimensional sorption surfaces were generated which describe the metal uptake as a function of equilibrium concentrations of both metals. These methods allow prediction of metal uptakes over a continuum of concentrations of both metals in binary systems.  相似文献   

9.
Natural Jordanian sorbent (consisting of primary minerals, i.e., quartz and aluminosilicates and secondary minerals, i.e., calcite and dolomite) was shown to be effective for removing Zn(II), Pb(II) and Co(II) from aqueous solution. The major mineral constitutions of the sorbent are calcite and quartz. Dolomite was present as minor mineral and palygorskite was present as trace mineral. The sorbent has microporous structure with a modest surface area of 14.4 m(2)g(-1). pH(zpc) (pH of zero point charge) of the sorbent was estimated by alkaline-titration methods and a value of 9.5 was obtained. The sorption capacities of the metals were: 2.860, 0.320, 0.076 mmol cation g(-1) for Zn(II), Pb(II) and Co(II) at pH 6.5, 4.5 and 7.0, respectively. The shape of the experimental isotherm of Zn(II) was of a "L2" type, while that of Pb(II) and Co(II) was of a "L1" type according to Giles classification for isotherms. Sorption data of metals were described by Langmuir and Freundlich models over the entire concentration range. It was found that the mechanism of metal sorption was mainly due to precipitation of metal carbonate complexes. The overall sorption capacity decreased after acid treatment, as this decreased the extent of precipitation on calcite and dolomite. The effect of Zn(II) ions concentration on sorption kinetics was investigated. Kinetic data were accurately fitted to pseudo-first order and external diffusion models which indicated that sorption of Zn(II) occurred on the exterior surface of the sorbent and the contribution of internal diffusion mechanism was insignificant. Furthermore, the sorption rate of Zn(II) was found to be slow, where only 10-20% of the maximum capacity was utilized in the first 30 min of interaction.  相似文献   

10.
A study on olive mill residues (OMR) as copper adsorbing material is reported in this work. A rough characterization of this waste material has been performed, by microanalysis and SEM pictures. Sorption tests with suspended OMR evidenced copper removal from solution, of about 60% in the investigated experimental conditions. The COD release in solution was also monitored during biosorption. Considering that it was significant, OMR washings with water were performed before biosorption. In this case the COD release in solution was reduced to less than 600 mg/L after two washings, while the OMR metal sorption properties did not change. Regenerated residues by acid solutions gave a copper removal of about 40%, in the same experimental conditions of the first adsorption test: regeneration with EDTA at different concentrations suggested that it presents a damage of adsorption active sites. On the other hand, the use of HCl and CaCl2 led to completely regenerate the biosorbent material. Tests were also performed with a column filled with 80 g of OMR and the breakpoint was demonstrated to take place after that about 1 L solution was treated in the investigated experimental conditions. Regeneration tests permitted to demonstrate that a concentration factor of about 2 can be obtained in no-optimized conditions, highlighting the possibility of using OMR for the treatment of metal bearing effluents. The main advantage of the process would be the ‘‘low cost’’ biosorbing material, considering that it represents a waste in the olive oil production.  相似文献   

11.
Natural zeolites, known for their excellent sorption properties towards metal cations, are widely used for the purification of wastewaters. The selectivity of clinoptilolite, a common zeolite mineral, for Pb is known to be particularly high, whereas its selectivity for Cd is often lower. Extraordinarily high sorption capacities for soft metal cations were observed in the case of thiol-functionalized silica gels and clays. In order to enhance the zeolites' sorption capacity for Cd, we treated natural heteroionic and Na-clinoptilolite in aqueous suspensions with cysteamine and propylamine solutions and investigated the sorption of Cd and Pb to amine-modified zeolite by a series of batch experiments. Stability constants for amine sorption on all zeolite samples at room temperature and 50 degrees C were obtained. Partial dimerization of cysteamine explains the enhanced sorption of this compound. In contrast, amine treatment did not enhance the adsorption capacity or selectivity of the clinoptilolite towards Cd and Pb. Instead, the amounts of adsorbed heavy metals decreased stoichometrically with increasing sorption of cysteamine and propylamine. This reduction can be explained by the blockage of channels by amine molecules and revealed that the modification of zeolites with mercaptoamines does not enhance the sorption capacity of zeolite for Cd and Pb.  相似文献   

12.
The removal of some heavy metals such as Mn(II), Co(II), Ni(II), and Cu(II) from aqueous solution is studied using a raw kaolinite. The sorption of these metals on kaolinite conformed to linear form of Langmuir adsorption equation. Langmuir C(m) constants for each metal were found as 0.446 mg/g (Mn), 0.919 mg/g (Co), 1.669 mg/g (Ni), 10787 mg/g (Cu) at 25 degrees C, respectively. Also, kinetic and thermodynamic parameters such as enthalpy (deltaH), free energy (deltaG) and entropy (deltaS) were calculated and these values show that adsorption of heavy metal on kaolinite was an endothermic process and the process of adsorption was favoured at high temperatures.  相似文献   

13.
Technology for immobilization of biomass has attracted a great interest due to the high sorption capacity of biomass for sequestration of toxic metals from industrial effluents. However, the currently practiced immobilization methods normally reduce the metal sorption capacities. In this study, an innovative ion-imprint technology was developed to overcome the drawback. Copper ion was first imprinted onto the functional groups of chitosan that formed a pellet-typed sorbent through the granulation with Sargassum sp.; the imprinted copper ion was chemically detached from the sorbent, leading to the formation of a novel copper ion-imprinted chitosan/Sargassum sp. (CICS) composite adsorbent. The copper sorption on CICS was found to be highly pH-dependent and the maximum uptake capacity was achieved at pH 4.7-5.5. The adsorption isotherm study showed the maximum sorption capacity of CICS of 1.08 mmol/g, much higher than the non-imprinted chitosan/Sargassum sp. sorbent (NICS) (0.49 mmol/g). The used sorbent was reusable after being regenerated through desorption. The FTIR and XPS studies revealed that the greater sorption of heavy metal was attributed to the large number of primary amine groups available on the surfaces of the ion-imprinted chitosan and the abundant carboxyl groups on Sargassum sp. Finally, an intraparticle surface diffusion controlled model well described the sorption history of the sorbents.  相似文献   

14.
The ion exchange behavior and hydrolysis rate of the detergent builder Type A zeolite have been studied in a variety of artificial and natural surface water samples. The experiments were conducted at zeolite A and trace metal concentrations characteristic of what could occur in receiving waters. The data indicate that Type A zeolite hydrolyzed extensively in the test waters at rates which were strongly dependent on hydrogen ion concentration. Half lives of 1–2 months were typical for waters at a neutral pH. Also, the extent of trace metal ion exchange was low (< 10%) for the metals Cd, Cu, Ni and Zn. Pb exchange was slightly higher. It is concluded that the use of the zeolite in detergents will result in little effect on the trace metal distribution of surface waters owing to the low degree of ion-exchange by the zeolite and its hydrolysis products.  相似文献   

15.
Sorption of dyes from aqueous solutions onto fly ash   总被引:20,自引:0,他引:20  
Brown coal fly ashes were tested as potentially low-cost sorbents for the removal of synthetic dyes from waters. It was shown that both basic (cationic) as well as acid (anionic) dyes can be sorbed onto the fly ash. The adsorption can be described by the multi-site Langmuir isotherm. The sorption capacities were in the range of 10−1–10−3 mmol/g and did not differ significantly for basic and acid dyes. The dye sorption decreased in the presence of organic solvents (methanol, acetone). The presence of oppositely charged surfactants exhibited a pronounced effect on the dye sorption—low concentrations of the surfactant enhanced sorption, whereas high concentrations solubilized the dyes and kept them in solution. Inorganic salts exhibited only a minor effect on the dye sorption. The sorption of basic dyes increased at high pH values, whereas the opposite was true for acid dyes.  相似文献   

16.
《Water research》1996,30(10):2309-2314
A procedure for purifying waters polluted with metal ions has been designed. The method is based on the precipitation of metals as magnetic ferrite from the alkalinised solution containing iron(II). The working conditions were optimised by using a Taguchi L9(34) experimental design in order to minimise the total residual concentration (TRC) of metal ions in solution. A statistical analysis of the experimental data revealed the most influential factor to be the Fe(II)/metal concentration ratio (F), with a 29.5% contribution, followed by pH (P, 5.2%) and time (H, 2.3%). On the other hand, temperature (T) had little effect on the purification efficiency (1.0%), whereas noise (N, KMnO4) was found to contribute by as much as 22.1%. Maximal purification efficiency (99.99%) is achieved when wastewater samples are treated for 3 h at 50°C and pH 10 in the presence of iron(II) in a ratio Fe(II)/total metal of 15. In these conditions, the process efficiency is also the least influenced by variability in the sample composition, which validates the proposed procedure.  相似文献   

17.
Lee SM  Davis AP 《Water research》2001,35(2):534-540
Dried waste slurry generated in seafood processing factories has been shown to be an effective adsorbent for the removal of heavy metals from dilute solutions. Characterization of the sludge surface with scanning electron microscope and X-ray microanalyzer were carried out to evaluate the components on the sludge surface that are related to the adsorption of metal ions. Aluminum and calcium, as well as organic carbon are distributed on the surface of sludge. Alkalimetric titration was used to characterize the surface acidity of the sludge sample. The surface acidity constants, pKa1s and pKa2s, were 5.80 and 9.55, respectively. Batch as well as dynamic adsorption studies were conducted with 10(-5) to 5 x 10(-3) M Cu(II) and Cd(II). A surface complexation model with the diffuse layer model successfully predicted Cu(II) and Cd(II) removals in single metal solutions. Predictions of sorption in binary-adsorbate systems based on single-adsorbate data fits represented competitive sorption data reasonably well over a wide range of conditions. The breakthrough capacity found from column studies was different for each metal ion and the data reflect the order of metal affinity for the adsorbent material very well.  相似文献   

18.
We have investigated sorption-desorption processes in the U(VI)-layered double hydroxide intercalated with EDTA at pH 7.5 characteristic of natural ad waste waters. The paper provided U(VI) sorption kinetics and its interpretation in the form of the model of pseudosecond order ensuring the highest correlation coefficient (R 2 = 0.9999). Within the broad interval V/m there occurs an effective extractionfrom the water of U(VI), which makes it possible to purify industrial wastewaters in large volumes.  相似文献   

19.
《Water research》1991,25(12):1575-1582
During denitrification carried out in the presence of methanol, glycerol, acetic and lactic acids as a C-source, the microbial growth parameters such as: maximum attainable biomass production (Px max), “optimal” biomass residence time (Θx), biomass yield coefficients (YN and YC) and specific biomass loss rate constants (bN and bC) were estimated. Also, the following process parameters: maximum attainable biomass N and C removal rates (ΔBx, Nmax and ΔBx, Cmax) and corresponding rate constants (KBx, N and KBx, C) were calculated. The values of these parameters were interpreted in relation to the chemical structure of the C-sources for denitrification and degree of their assimilability by the bacteria and fungi which dominated in biocenoses.  相似文献   

20.
The decontamination of synthetic Pb(II), Zn(II), Cd(II), Ni(II) solutions was investigated, using silica gels chemically modified with poly(ethyleneimine) (PEI) as sorbents. Two families of sorbents, i.e. silica/PEI and crosslinked silica/PEI, were prepared and characterized. Then the removal of metal ions from synthetic aqueous solutions was studied by static tests. They revealed that the sorption capacities depend on the pH, the initial concentration and to some extent on the nature of the metal. The recovery of the metal cations from the saturated sorbents was possible with diluted acid, only for the crosslinked supports. In this case, the regeneration and reuse without sorption decrease, was demonstrated. The presence of other cations (as Na(+), Ca(2+)) and metals does not affect the sorption capacities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号