首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
系统研究了(VFe)48Ti26Cr26-xMox(0≤x≤5)合金吸放氢性能及微观组织结构.XRD及PCT测试结果表明,随着Mo含量增加,合金的晶格常数增大,放氢平台压升高,吸放氢量在Mo含量0≤x≤2范围内不出现显著变化,且有效放氢量(质量分数)均能保持在2%以上.当Mo含量为1 at%时,合金吸放氢量均达到最大值,吸氢量为3.59%,放氢量为2.08%,室温下的放氢平台压为0.337 MPa.SEM与EDS分析表明,不同Mo含量的合金均由bcc主相、Laves相及稀土氧化物相组成,且Mo主要存在于合金的bcc主相中,而在Laves相中分布相对较少.  相似文献   

2.
系统研究了(VFe)48Ti26Cr26-xMox(0≤x≤5)合金吸放氢性能及微观组织结构。XRD及PCT测试结果表明,随着Mo含量增加,合金的晶格常数增大,放氢平台压升高,吸放氢量在Mo含量0≤x≤2范围内不出现显著变化,且有效放氢量(质量分数)均能保持在2%以上。当Mo含量为1at%时,合金吸放氢量均达到最大值,吸氢量为3.59%,放氢量为2.08%,室温下的放氢平台压为0.337MPa。SEM与EDS分析表明,不同Mo含量的合金均由bcc主相、Laves相及稀土氧化物相组成,且Mo主要存在于合金的bcc主相中,而在Laves相中分布相对较少。  相似文献   

3.
研究了V40-Fe8-Ti-Cr(Ti/Cr=0.95~1.20) 四元合金的结构及吸放氢性能.结果表明:不同Ti/Cr比的合金均为bcc单相结构,随着Ti/Cr比的降低,合金的晶格常数降低,平台压升高,吸氢量降低,放氢量先增加后降低;当Ti/Cr为1时,得到合金V40Ti26Cr26Fe8在298 K下具有最大的放氢量2.4%(质量分数),平台压为0.24 MPa.通过计算得到V40Ti26Cr26Fe8的焓变ΔH和熵变ΔS分别为-39.6 kJ·mol-1H和-140.3 J·mol-1·K-1,在423 K下的放氢平台压力可达27.5 MPa.  相似文献   

4.
钛钒铬基贮氢合金贮氢量大,吸放氢条件温和,是国内外贮氢材料研究的热点之一。为此研究了钛钒铬基合金中V、Cr含量对贮氢性能的影响,结果表明:随着金属元素V含量的增加,合金的放氢平台压力略有降低和吸放氢量略有增大。而随着金属元素Cr含量的增加,合金的放氢平台压力升高,放氢量则明显提高。随着放氢温度提高放氢的平台压力升高,放氢量则增大。  相似文献   

5.
通过XRD、SEM/EDS及PCT测试研究了由FeV80合金制备的V28Ti32Cr28Mn6Fe6合金的组织结构及吸放氢特性。该合金由bcc相和C14Laves第二相构成。由于合金中氧含量(0.83%,质量分数)较高,因而吸放氢容量较低,动力学性能较差。通过添加一定量的稀土元素La(1%~10%,质量分数),可显著降低合金中的氧含量,从而提高其动力学性能和吸放氢容量。当La的添加量达到4.0%时,合金具有最佳的吸放氢性能,吸氢量达到3.62%,放氢量达到2.13%;合金氢化物的生成焓为(-40.0±1)kJ/mol·H2。  相似文献   

6.
Ti1.0VxMn(2-x)(x=0.6~1.6)合金的微结构和储氢性能   总被引:1,自引:0,他引:1  
系统研究了V替代Mn对Ti1.0VxMn(2-x)(x=0.6~1.6)合金的相结构及吸放氢性能的影响。研究结果表明:随着X的增加,合金由Laves和bcc两相结构逐渐变化到bcc单相结构,吸氢量也随之增加;当V含量增加到x≥1.2时,合金具有bcc单相结构,合金最大吸氢量达到3.5%(质量分数),但是由于缺少脆性的Laves相,合金的活化性能变差,饱和吸氢时间也有所延长;随着V含量的增加,合金主相bcc相晶胞体积增大,从而导致合金PCT曲线平台压力降低,滞后效应也逐渐增大,但平台趋向于平缓。  相似文献   

7.
研究了吸铸对钛钒铬基合金结构和贮氢性能的影响。结果表明:吸铸有利于钛钒铬基合金单一BCC结构固溶体相的形成,使合金相的点阵常数略有减小;吸铸使钛钒铬基合金的放氢压力平台的斜率因子Sf降低,平台压力略有降低,活化性能变差,还使合金吸氢量和放氢量均有提高;随着Cr含量的增加,合金放氢的平台压力逐渐升高,放氢量提高。  相似文献   

8.
研究了Mg50 Ni50 -xTix 合金的非晶形成能力与非晶合金电极的吸放氢性能。结果表明 :在Mg50 Ni50 -xTix合金中 ,当Ti替代Ni元素的量低于 1 5% (摩尔分数 )时 ,机械合金化能够得到几乎单一的非晶态合金 ;用Ti替代Ni形成的三元非晶合金能降低镁镍合金的平衡氢压 ;少量的Ti替代能改善合金的电化学吸放氢容量 ,使合金电极的吸放氢循环稳定性得到提高。这被认为是在三元合金中钛元素减缓了合金中镁元素的氧化腐蚀进程所致。  相似文献   

9.
采用XRD、SEM/EDS和PCT测试等方法,研究了添加Mn和Ce对于(Ti0.27Cr0.33V0.40)100-xMnxCey合金的组织结构和储氢性能的影响。结果表明:Mn的添加促进了富Ti相的析出,减小了合金bcc主相的晶格常数,平台压升高,残余氢量减小,当Mn含量为8at%时其有效储氢量达到最大值,在此基础上添加Ce,有效抑制了富Ti相的析出,促进了合金成分的均匀分布,增大了合金的晶格常数,改善了合金的平台性能,提高了合金的最大吸氢量和有效储氢量。  相似文献   

10.
采用XRD和SEM分析了Ti0.7Zr0.3(Cr1-xVx)2(x=0.1,0.2,0.3,0.4)合金的相组成、晶体结构和元素成分;采用Sieverts装置、差热和热重分析仪(DTA-TG)测量了合金的活化性能、吸放氢P-C-T曲线、热力学参数及高温放氢特征.结果表明,合金为多相组织,存在C36(P63/mmc)和C15(Fd3m)2种Laves相和几种晶格常数近似的钒基bcc固溶体相.当V含量较低时,合金主要由C36型Laves相和少量bcc固溶体相组成.随着V含量增加,C36型转变为C15型Laves相,其中第3种(C层)堆垛存在几率增加,而且合金中bcc固溶体相含量增加.合金在2 MPa氢压和常温下能迅速活化;表面氧化后,x=0.1和0.2合金仍表现出优异的活化性能.随着V含量增加,合金的贮氢量增加、平台压力减小.合金氢化的相对偏摩尔焓变(ΔH)和熵变(ΔS)的变化范围为-7~-28 kJ/mol和-35~-95 J/(mol·K).DTA-TG分析表明,合金氢化物分解主要出现在500~600 K温度区间,并呈现对应不同类型氢化物的2个分解温度,加热到800 K时合金中稳定的氢化物完全分解.  相似文献   

11.
研究了Al对TiV0.8-xCr1.2Alx(x=0、0.05、0.1、0.15、0.2)合金的结构与贮氢性能的影响.XRD、PCT等测试研究表明:TiV0.8-xCr1.2Alx合金均为单相bcc结构,铸态时主相为树枝状晶组织;随着Al含量由0增加到6.67 at%,合金的晶格常数变大,吸氢量和放氢量减小,氢化物标准生成焓变与生成熵变增大.放氢的平台压随着Al含量的增加而线性增大.TiV0.75Cr1.2Al0.05合金最大吸氢量达3.887%(质量分数),有效吸氢量达2.288%.  相似文献   

12.
系统研究了Ti17Cr23V55-xZr5Fex(x=11~16)合金的相结构以及储氢特性。XRD及SEM分析表明,所有合金的主相均为体心立方(bcc)结构的钒基固溶体,并含有σ-FeCr和Cr2Zr等第二相;随着Fe含量的增加,合金中的bcc主相含量和晶胞体积逐渐降低,σ-FeCr相含量逐渐增多,而Cr2Zr相含量几乎恒定。储氢性能测试表明,该系列合金的活化性能和动力学性能都很好,在20℃和4MPa初始氢压条件下首次吸氢即可活化,并且无需氢化孕育期就能快速吸氢。当Fe含量从x=11增加至x=16时,合金的室温最大吸氢量从268ml/g逐渐降低至25lml/g,80℃有效放氢量从153ml/g逐渐降低至137ml/g。研究表明,为了改善合金的有效储氢能力,必须消除合金中不吸氢的σ-FeCr相或者抑制σ-FeCr相的生成。  相似文献   

13.
纳米晶和非晶Mg20-xLaxNi10(x=0-6)贮氢合金的贮氢行为   总被引:1,自引:0,他引:1  
用快淬技术制备了Mg2Ni型贮氢合金,合金的名义成分为Mg20-xLaxNi10 (x = 0, 2, 4, 6)。用XRD、SEM、HRTEM分析了合金的微观结构。发现不含La的快淬合金中没有非晶相,但含La快淬合金中显示以非晶相为主。当La含量x≤2时,铸态合金的主相为Mg2Ni相,但随着La含量的进一步增加,铸态合金的主相改变为(La,Mg)Ni3+LaMg3相。应用Sieverts设备研究了铸态及快淬态合金的吸放氢量及动力学,结果表明,x=2的合金吸放氢量及动力学随淬速的增加而增加,但对于x=6的合金,结果是相反的。电化学测试结果表明,x=2合金的放电容量随淬速的增加而增加,而对于x=6合金,结果也是相反的。快淬显著地提高了x=2, 6合金的循环稳定性  相似文献   

14.
为了改善Mg2Ni型合金的吸放氢动力学性能,用Cu部分替代合金中的Ni。用快淬工艺制备了纳米晶Mg2Ni1-xCux(x=0,0.1,0.2,0.3,0.4)贮氢合金,用XRD、SEM、HRTEM分析了铸态及快淬态合金的微观结构;用自动控制的Sieverts设备测试了合金的吸放氢动力学性能。结果表明,快淬态合金具有纳米晶结构,Cu替代Ni不改变合金的主相Mg2Ni,但导致形成第二相Mg2Cu。随Cu含量的增加,合金的吸氢量先增加而后减小,但合金的放氢量随Cu含量的增加而单调增加。快淬显著提高合金的吸放氢量并改善合金的吸放氢动力学。  相似文献   

15.
通过PCT测试及XRD分析研究了添加10%(质量分数,下同)Ni并球磨对Mg17Al12合金吸放氢性能及结构的影响.10%Ni的添加改善了Mg17Al12合金的吸放氢性能.合金在423 K下即可快速吸氢,在523 K下表现最优的吸放氢性能并具有优异的动力学性能,在15 min内吸氢量可以达到2.93%(质量分数,下同),饱和吸氢量达到4.20%.合金在523 K下放氢平台压达到0.3 MPa,放氢量为3.45%.合金氢化物的生成焓和生成熵分别为-68.37 kJ·mol-1H2、-121.42 J.(mol-1·K-1).在Mg17Al12合金添加10%Ni球磨1 h后,主相仍然为Mg17Al12相并有少量的Al-Ni金属间化合物相,吸氢饱和后合金的相组成为MgH2、Al以及Al-Ni金属间化合物,放氢后主相为Mg17Al12相,表明Mg17Al12相在吸放氢过程中的相变是可逆的.  相似文献   

16.
热处理(1173,1223,1273,1323 K)前后的LaNi_(3.8)Al_(1.0)Mn_(0.2)合金表明,该合金均由1个主相,3种第二相组成。热处理后第二相变小,分布更加弥散,第二相中LaNi_2变为LaNi相,晶胞参数和晶胞体积增大,活化性能变差,但吸放氢平台压降低,吸放氢平台的斜率和滞后变小,合金的吸氢速度显著变快,吸放氢焓变和吉布斯自由能的绝对值增大,而吸氢量未见明显变化。随着热处理温度的升高,晶胞参数和晶胞体积先增大后减小,吸放氢平台压先降低后升高,斜率先增大后减小,滞后先减小后增大,而焓变和自由能的绝对值先增大后减小,在1223 K分别达到最大和最小值,而热处理温度的升高使活化性能和动力学性能略有提升。  相似文献   

17.
Ml(Ni4.55-xCOxMn0.4Ti0.05)合金的相结构与电化学性能   总被引:10,自引:0,他引:10  
对Ml(Ni4.55-xCoxMn0.4Ti0.05)合金(x=0.0~0.8)的相结构、气态吸放氢特性及电化学性能进行一系统的研究。结果表明,在x≤0.3的组成范围内。合金保持单一的LaNi5相:当x〉0.3时,合金中析出多种第二相,且第二相总量随Co含量的增加而增多。随合金Co含量的增加,晶胞体积增大,吸放氢平台下降,滞后减小,但;定氢容量降低,在X≤0.3的组成范围内,合 Co含量增大提高了  相似文献   

18.
系统地研究了 Fe0 .85 Mn0 .1 5 Ti0 .9M0 .1 (M=Zr,V,Ca)合金的贮氢性能。研究结果表明 :Fe0 .85 Mn0 .1 5 Ti0 .9Zr0 .1 合金在室温下经几分钟的孕育期就可吸氢 ,但合金在氢化过程中形成了氢含量很高的α相 ,导致合金的贮氢量降低 ,同时还使 p- c- T曲线的平台特性变差 ;Fe0 .85 Mn0 .1 5 Ti0 .9V0 .1 合金的活化性能进一步得到改善 ,在室温下几乎不需要孕育期就可以吸氢 ,但同时要降低合金的贮氢量 ,而对合金的 p- c- T曲线平台特性影响不明显 ;用 Ca取代 Fe0 .85 Mn0 .1 5 Ti合金中的部分 Ti则对合金的贮氢性能影响不明显。通过 XRD分析认为 ,上述性能的变化主要与合金中出现第二相有关  相似文献   

19.
研究了Cu含量变化对Lao.6Nd0.4Ni4.8Mn0 2Cux(x=0,0.1,0.2,0.3,0.4)合金系的晶胞参数、热力学性能以及贮氢性能的影响,讨论了晶胞参数与吸放氢平台压力以及吉布斯自由能之间的关系.研究结果表明,随着Cu含量的增加,晶胞参数á增加,c减小,晶胞体积先增大后减小;吸放氢平台压力随着晶胞参数á的增加呈线性降低;La0.6Nd0.4Ni4.8Mn0.2Cux合金的Seitz半径随着Cu含量的增加而减小,并且与△Sd/△Hd之间呈现非常好的线性关系,与△Sa/△Ha之间存在双曲线关系.  相似文献   

20.
Fe的添加,提高了金属钒的活化性能和放氢平台压力,降低吸放氢容量.Fe含量<1%(原子分数,下同),对二氢化物并无明显影响,Fe含量>1%,二氢化物平台压明显升高,容量明显下降,氢化物的生成焓明显降低;Fe的添加对一氢化物并无明显的影响.随着Fe含量的增加,合金的晶格常数和晶胞体积呈线性趋势降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号