首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本文主要阐述了旋转框架式矫直机的结构特点,其中涉及矫直机的结构设计的说明、工作原理等。由于挤压或连铸的铜管坯在冷却时会发生弯曲,当管坯进入轧制工序时,往往造成轧机的芯棒难以顺利地穿过管坯。因此,必须在挤压与轧制或铸造与轧制工序之间配置一台矫直设备,通过矫直提高管坯的直线度,确保在轧制时芯棒能顺利地穿过管坯内孔。常用的旋转框架式矫直机具有矫直精度高、管坯不旋转等特点,当管坯在旋转框架中交叉布置的矫直辊所形成的孔型中间通过  相似文献   

2.
目前,广泛用于生产钢管的二辊斜轧穿孔法因为不能使用铸坯直接轧制,并且在轧制时坯料中心出现孔腔,管坯内表面质量较差,不用于生产有色金属及其合金管材.利用挤压法生产某些钛合金管坯,由于未找到满意的润滑剂,表面质量很差.  相似文献   

3.
主要研究了挤压速度和挤压温度两个工艺参数对AZ31B镁合金工件成形过程中表面粗糙度和显微硬度的影响。结果表明:当挤压速度小于2.8 mm/s时,提高挤压速度能降低镁合金的表面粗糙度数值,改善表面质量;当速度超过3.0 mm/s时,反而会提高粗糙度数值,对表面质量产生负面影响。提高挤压温度也能降低镁合金的表面粗糙度数值,当挤压温度到达360℃后,表面粗糙度不再发生变化,表面质量趋于稳定。当挤压速度小于2.4 mm/s时,提高挤压速度能提高镁合金的显微硬度,改善镁合金的表面质量;但速度超过2.4 mm/s后,显微硬度迅速降低,造成表面质量急剧下降。当挤压温度小于360℃时,提高挤压温度也能提高镁合金的显微硬度,温度超过360℃后,显微硬度明显降低。  相似文献   

4.
针对使用LG轧机轧制TA2钛管时外表面出现横向裂纹的现象,分析了轧前管坯的内外表面质量、化学成分、力学性能,对轧制后管材横向裂纹的断口形貌进行SEM观察,并对轧制工艺和轧制参数进行分析,结果显示,管坯质量良好,轧制工艺及参数合理,以上均不是造成横向裂纹的原因.通过测量轧辊轧槽的开口度,发现轧辊的开口度为1.12,比正常情况的1.01 ~1.07偏大,结合轧后管材壁厚偏差较大的现象,认为轧辊开口度过大,使得金属轧制变形不均匀,是造成管材表面产生横向裂纹的原因.基于以上分析,采用辊槽开口度正常的轧辊对管坯继续进行轧制,结果显示,管材外表面横向裂纹消失.  相似文献   

5.
超大规格铝合金薄壁管生产难度大。试验研究了外径270 mm、壁厚6 mm的6061铝合金管材生产工艺技术。在45 MN挤压机上采用无润滑半穿孔反向挤压出尺寸精度高的管坯;在拉拔工序,采用专用夹钳、辅助垫,避免了夹头拉断,并采用硬质合金模具使管材表面光洁;整径过程控制减径量;辊式矫直过程采用预矫直、精心逐渐调整矫直辊压力及角度。生产出了尺寸精度高、弯曲度小、表面质量好、力学性能符合要求的6061铝合金薄壁管材。  相似文献   

6.
采用了不同表面质量挤压针尖进行试制,并选取内表面有直线状擦伤的挤压管坯进行轧制、拉拔和碱洗等工艺处理,分析了5A02铝合金管材内表面亮线缺陷产生的原因和形成机理,并研究了挤压管坯内表面纵向擦伤缺陷在后序工序中的遗传效应.结果 表明:挤压管坯内表面上明显的擦划伤和拉道等缺陷遗传性较强,是导致产生亮线缺陷的根本原因.蚀洗工...  相似文献   

7.
设计了两种氧含量的Gr.3管材,并按照Gr.3厚壁钛管的变形工艺,截取各道次加工过程中管材的变形锥体,依据一定的规律截取锥体上不同部位的断面,检测断面的显微硬度并得到不同氧含量管材的硬度在整个变形过程中的分布曲线,对照各个部位的显微组织,分析了硬度分布曲线与轧制变形过程之间的规律及相互关系,发现当变形量在10%~20%以下时,断面上的硬度有较大差异,氧含量越低,该现象越明显;氧含量的提高加大了断面上沿壁厚方向变形的不均匀影响,厚壁Gr.3管材在变形过程中,其变形量应大于35%,送进量宜小,曲线尤其是内孔曲线平缓对管材质量的提高有帮助。  相似文献   

8.
设计了两种氧含量的Gr.3管材,并按照Gr.3厚壁钛管的变形工艺,截取各道次加工过程中管材的变形锥体,依据一定的规律截取锥体上不同部位的断面,检测断面的显微硬度并得到不同氧含量管材的硬度在整个变形过程中的分布曲线,对照各个部位的显微组织,分析了硬度分布曲线与轧制变形过程之间的规律及相互关系,发现当变形量在10%~20%以下时,断面上的硬度有较大差异,氧含量越低,该现象越明显;氧含量的提高加大了断面上沿壁厚方向变形的不均匀影响,厚壁Gr.3管材在变形过程中,其变形量应大于35%,送进量宜小,曲线尤其是内孔曲线平缓对管材质量的提高有帮助.  相似文献   

9.
目的获得二维超声挤压最优工艺参数,并研究工艺参数以及其交互作用对工件表面质量的影响。方法采用正交试验法对7075-T651铝合金进行二维超声挤压加工试验,运用熵权法确定表面粗糙度和显微硬度的影响权重,结合灰色关联法和TOPSIS法构建最优表面质量评价模型,以此获得最佳表面质量时的最优工艺参数,并基于极差分析获得工艺参数以及其交互作用对工件表面质量的影响结果。结果经二维超声挤压加工后,零件表面粗糙度值显著降低,表层显微硬度大幅提高,建立的评价模型可准确获得最优工艺参数。结论最优工艺参数为:静压力300 N,挤压速度30 m/min,进给量0.1 mm/r。此时表面粗糙度Ra值约为0.41μm,显微硬度约为378HV。工艺参数间的交互作用对零件表面粗糙度、显微硬度和表面综合质量的影响远大于主效应,对表面综合质量起主要影响作用的是挤压速度分别与静压力、进给量间的交互作用。  相似文献   

10.
为了简化φ89 mm×2 mm的TA2钛管加工工艺路线以及提高生产效率,通过改变管坯规格和减少轧制道次的方法,对原始工艺进行了优化.经过对挤压比、开坯轧制力和开坯轧机模具的承载能力进行校核,确定了较优的工艺路线.经过工艺优化,φ89 mm×2 mm钛管生产的原材料损耗减少了约1%,轧制道次减少了1道次,设备资源利用率显著提高,模具磨损减少,生产效率提高了3倍.  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号