首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent regulatory concerns about the presence of the pathogen Listeria monocytogenes in ready-to-eat aquatic foods such as caviar has prompted the development of postpackaging pasteurization processes. However, caviar is heat labile, and conventional pasteurization processes affect the texture, color, and flavor of these foods negatively. In this study, chum salmon (Oncorhynchus keta, 2.5% total salt) caviar or ikura and sturgeon (Acipenser transmontanus, 3.5% total salt) caviar were inoculated with three strains of Listeria innocua in stationary phase at a level of more than 10(7) CFU/g. L innocua strains were used because they exhibit an equivalent response to L monocytogenes for many physicochemical processing treatments, including heat treatment. The products were treated by immersion in 500 IU/ml nisin solution and heat processed (an 8-D process without nisin or a 4-D process with 500 IU/ml nisin) in a newly developed radio frequency (RF; 27 MHz) heating method at 60, 63, and 65 degrees C. RF heating along with nisin acted synergistically to inactivate L. innocua cells and total mesophilic microorganisms. In the RF-nisin treatment at 65 degrees C, no surviving L. innocua microbes were recovered in sturgeon caviar or ikura. The come-up times in the RF-heated product were significantly lower compared with the water bath-heated caviar at all treatment temperatures. The visual quality of the caviar products treated by RF with or without nisin was comparable to the untreated control.  相似文献   

2.
This study was undertaken to compare the efficacies of chlorous acid (268 ppm), sodium hypochlorite (200 ppm), and lactic acid (2%) in eliminating total mesophilic microorganisms, Salmonella Typhimurium, and Listeria monocytogenes on commercial mung bean sprouts immediately after treatment and during posttreatment refrigerated storage. Treatment with sodium hypochlorite for 10 min did not reduce the total aerobic count. However, treatment with lactic acid and chlorous acid for 10 min initially reduced the total aerobic count by 0.6 and 0.8 log CFU/g, respectively, and maintained the same level or a lower level of the total aerobic count during the storage time. Treatment with chlorous acid reduced Salmonella Typhimurium from 5.0 log to undetectable levels (<0.48 log CFU/g), and the pathogen remained undetectable over a 9-day storage period. Treatment with lactic acid resulted in an initial 3-log reduction and further reduced the number of Salmonella Typhimurium cells to undetectable levels after 3 days. For L. monocytogenes, treatment with chlorous acid resulted in an initial 5-log reduction, and treatment with lactic acid resulted in a 2-log reduction at the beginning and undetectable levels after 9 days. When chemically injured cells were investigated by the selective overlay method, no statistical difference was observed (P < 0.05) between the number of injured cells recovered following treatment with chlorous acid and the number of bacteria counted on selective media, whereas sodium hypochlorite generated more injured cells than the other treatments did. These data suggest that treatment with chlorous acid may be useful in reducing total mesophilic microorganisms, Salmonella Typhimurium, and L. monocytogenes in commercial mung bean sprouts.  相似文献   

3.
Low-molecular-weight polylactic acid (LMW-PLA) and lactic acid (LA) were used to inhibit growth of Listeria monocytogenes Scott A on vacuum-packaged beef. Nisin was also used simultaneously as an additional hurdle to the growth of this pathogen. Inoculated beef cubes were immersed in a solution of 2% LMW-PLA, 2% LA, 400 IU/ml of nisin, or combinations of each acid and nisin for 5 min and drip-dried for 15 min. The cubes were then vacuum-packaged and stored at 4 degrees C for up to 42 days. Surface pH values of beef cubes treated with 2% LMW-PLA, the combination of 400 IU/ml of nisin and 2% LMW-PLA (2% NPLA), or 400 IU/ml of nisin alone were significantly reduced from 5.59 to 5.18, 5.01, and 5.19, respectively, whereas those decontaminated with 2% LA or 400 IU/ml of nisin and 2% LA (2% NLA) were significantly decreased from 5.59 to 4.92 and 4.83, respectively, at day 0 (P < or = 0.05). The 2% LMW-PLA, 2% LA, 2% NPLA, 2% NLA, and 400 IU/ml of nisin showed immediate bactericidal effects on L. monocytogenes Scott A (1.22-, 1.56-, 1.57-, 1.94-, and 1.64-log10 reduction, respectively) compared with the initial number of 5.33 log10 CFU/cm2 of the untreated control at day 0 (P < or = 0.05). These treatments, combined with vacuum-packaging and refrigeration temperature, succeeded to inhibit growth of L. monocytogenes during storage up to 42 days. At the end of 42 days, the numbers of L. monocytogenes Scott A remaining viable on these samples were 1.21, 0.36, 2.21, 0.84, and 0.89 log10 CFU/cm2, respectively.  相似文献   

4.
Although the transmission of L. monocytogenes to humans via pasteurized egg products has not been documented, L. monocytogenes and other Listeria species have been isolated from commercially broken raw liquid whole egg (LWE) in both the United States and Ireland. Recent Listeria thermal inactivation studies indicate that conventional minimal egg pasteurization processes would effect only a 2.1- to 2.7-order-of-magnitude inactivation of L. monocytogenes in LWE; thus, the margin of safety provided by conventional pasteurization processes is substantially smaller for L. monocytogenes than for Salmonella species (a 9-order-of-magnitude process). The objective of this study was to evaluate the inhibitory effects of nisin on the survival and growth of L. monocytogenes in refrigerated and pH-adjusted (pH 6.6 versus pH 7.5) ultrapasteurized LWE and in a liquid model system. The addition of nisin (1,000 IU/ml) to pH-adjusted ultrapasteurized LWE reduced L. monocytogenes populations by 1.6 to > 3.3 log CFU/ml and delayed (pH 7.5) or prevented (pH 6.6) the growth of the pathogen for 8 to 12 weeks at 4 and 10 degrees C. Bioactive nisin was detected in LWE at both pH values for 12 weeks at 4 degrees C. In subsequent experiments, Listeria reductions of > 3.0 log CFU/ml were achieved within 24 h in both LWE and broth plus nisin (500 IU/ml) at pH 6.6 but not at pH 7.5, and antilisterial activity was enhanced when nisin was added as a solution rather than in dry form.  相似文献   

5.
The effect of nisin or citric acid or combinations of these two inhibitors on the inactivation of a cocktail of three Listeria innocua strains was investigated in a model brain heart infusion (BHI) broth and hummus (chickpea dip). In BHI broth, citric acid had a limited ability to inhibit L. innocua growth. Nisin initially reduced L. innocua concentrations by about 3 log cycles; however, L. innocua reached concentrations similar to those of the control after 5 days at 22 degrees C. In combination, the effects of 500 IU/ml nisin and 0.2% citric acid were synergistic and resulted in complete elimination of L. innocua in the BHI broth. The inhibition of L. innocua by nisin (500 or 1,000 IU/g), citric acid (0.1, 0.2, or 0.3%), or their combinations also was evaluated in hummus. Citric acid alone did not affect L. innocua growth or the aerobic bacterial plate count. A combination of 1,000 IU/g nisin and 0.3% citric acid was somewhat effective (approximately 1.5-log reduction) in controlling the concentration of L. innocua and the aerobic plate count for up to 6 days. This combination also may be useful, in addition to proper hygienic practices, for minimizing the growth of the pathogen Listeria monocytogenes in hummus.  相似文献   

6.
Food-grade additives were used to enhance the efficacy of high-pressure processing (HPP) against barotolerant Listeria monocytogenes. Three strains of L. monocytogenes (Scott A, OSY-8578, and OSY-328) were compared for their sensitivity to HPP, nisin, tert-butylhydroquinone (TBHQ), and their combination. Inactivation of these strains was evaluated in 0.2 M sodium phosphate buffer (pH 7.0) and commercially sterile sausage. A cell suspension of L. monocytogenes in buffer (10(9) CFU/ml) was treated with TBHQ at 100 ppm, nisin at 100 IU/ml, HPP at 400 MPa for 5 min, and combinations of these treatments. Populations of strains Scott A, OSY-8578, and OSY-328 decreased 3.9, 2.7, and 1.3 log with HPP alone and 6.4, 5.2, and 1.9 log with the HPP-TBHQ combination, respectively. Commercially sterile sausage was inoculated with the three L. monocytogenes strains (10(6) to 10(7) CFU/g) and treated with selected combinations of TBHQ (100 to 300 ppm), nisin (100 and 200 ppm), and HPP (600 MPa, 28 degrees C, 5 min). Samples were enriched to detect the viability of the pathogen after the treatments. Most of the samples treated with nisin, TBHQ, or their combination were positive for L. monocytogenes. HPP alone resulted in a modest decrease in the number of positive samples. L. monocytogenes was not detected in any of the inoculated commercial sausage samples after treatment with HPP-TBHQ or HPP-TBHQ-nisin combinations. These results suggest that addition of TBHQ or TBHQ plus nisin to sausage followed by in-package pressurization is a promising method for producing Listeria-free ready-to-eat products.  相似文献   

7.
The objective of this study was to determine the effectiveness of packaging films coated with a methylcellulose/hydroxypropyl methylcellulose-based solution containing 10,000, 7,500, 2,500, or 156.3 IU/ml nisin for controlling Listeria monocytogenes on the surfaces of vacuum-packaged hot dogs. Barrier film coated with a methylcellulose/hydroxypropyl methylcellulose-based solution containing nisin or no nisin (control) was heat sealed to form individual pouches. Hot dogs were placed in control and nisin-containing pouches and inoculated with a five-strain L. monocytogenes cocktail (approximately 5 log CFU per package), vacuum sealed, and stored for intervals of 2 h and 7, 15, 21, 28, and 60 d at 4 degrees C. After storage, hot dogs and packages were rinsed with 0.1% peptone water. Diluent was spiral plated on modified oxford agar and tryptic soy agar and incubated to obtain counts (CFU per package). L. monocytogenes counts on hot dogs packaged in films coated with 156.3 IU/ml nisin decreased slightly (approximately 0.5-log reduction) through day 15 of refrigerated storage but was statistically the same (P > 0.05) as hot dogs packaged in films without nisin after 60 d of storage. Packaging films coated with a cellulose-based solution containing 10,000 and 7,500 IU/ml nisin significantly decreased (P < 0.05) L. monocytogenes populations on the surface of hot dogs by greater than 2 log CFU per package throughout the 60-d study. Similar results were observed for hot dogs packaged in films coated with 2,500 IU/ml nisin; however, L. monocytogenes populations were observed to be approximately 4 log CFU per package after 60 d of refrigerated storage from plate counts on tryptic soy and modified oxford agars.  相似文献   

8.
The objective of this study was to use transmission electron microscopy to investigate the morphological changes that occurred in Listeria monocytogenes cells treated with grape seed extract (GSE), green tea extract (GTE), nisin, and combinations of nisin with either GSE or GTE. The test solutions were prepared with (i) 1% GSE, 1% GTE, 6,400 IU of nisin, and the combination of these dilutions with nisin or with (ii) the pure major phenolic constituents of GSE (0.02% epicatechin plus 0.02% catechin) or GTE (0.02% epicatechin plus 0.02% caffeic acid) and their combinations with 6,400 IU of nisin in tryptic soy broth with 0.6% yeast extract (TSBYE). Test solutions were inoculated with L. monocytogenes at approximately 10(6) CFU/ml and incubated for 3 or 24 h at 37 degrees C. After 3 h of incubation, cells were harvested and evaluated under a transmission electron microscope (JEOL-100 CX) operating at 80 kV (50,000X). Microscopic examination revealed an altered cell membrane and condensed cytoplasm when L. monocytogenes cells were exposed to a combination of nisin with either GSE or GTE or to pure compounds of the major phenolic constituents in combination. After 24 h of incubation at 37 degrees C, the combinations of nisin with GSE and nisin with GTE reduced the L. monocytogenes population to undetectable levels and 3.7 log CFU/ml, respectively. These observations indicate that the combination of nisin with either GSE or GTE had a synergistic effect, and the combinations of nisin with the major phenolic constituents were most likely associated with the L. monocytogenes cell damage during inactivation in TSBYE at 37 degrees C.  相似文献   

9.
ABSTRACT: We studied the effectiveness of partial replacement of glycerol with citric, lactic, malic, and tartaric acids on the antimicrobial activities of nisin (205 IU/g protein)-incorporated soy protein film against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella gaminara. S. gaminara inoculated into 2.6% malic acid-incorporated films and lactic acid-incorporated films with nisin (5.7 and 3.4 log number colony-forming units (CFU)/mL, respectively) and without nisin (3.2 and 3.0 log number CFU/mL, respectively) had fewer survivors than HCl-incorporated film with and without nisin (8.6 and 7.9 log number CFU/mL, respectively). Malic acid (2.6%)-incorporated soy protein film had the fewest survivors of L. monocytogenes, S. gaminara , and E. coli O157:H7 (5.5, 3.0, and 6.8 log number CFU/mL, respectively) and has the potential to inhibit a wide spectrum of microbes in product application.  相似文献   

10.
The inhibition of Listeria monocytogenes and mesophilic aerobic bacteria in cold-smoked rainbow trout by nisin, sodium lactate or their combination was studied. Nisin (4000-6000 IU/ml), sodium lactate (60%) or their combination (1:1) were injected into rainbow trout at an industrial scale before the smoking process, or injected into the finished smoked product. Both types of fish samples were smoked, sliced and vacuum-packed according to normal practice in the plant. Packages were opened and L. monocytogenes was inoculated (10(3)-10(4) log colony forming units (cfu)/g) onto the fish samples, which were then vacuum packed again. Samples were stored at 8 degrees C for 17 days or at 3 degrees C for 29 days. Listeria and mesophilic aerobic bacteria counts were measured once a week. The effects of treatments on sensory characteristics and storage stability were also analyzed. Both nisin and lactate inhibited the growth of L. monocytogenes in smoked fish, but the combination of the two compounds was even more effective. The combination of nisin and sodium lactate injected into smoked fish decreased the count of L. monocytogenes from 3.26 to 1.8 log cfu/g over 16 days of storage at 8 degrees C. The level of L. monocytogenes remained almost constant (4.66-4.92 log cfu/g) for 29 days at 3 degrees C in the samples injected before smoking and which contained both nisin and sodium lactate. The treatments did not affect the sensory characteristics of cold-smoked rainbow trout. Based on a triangle test, the sensory quality of all test samples remained unchanged for 23 days of storage at 3 degrees C, whereas the control fish prepared without additives or additional salt remained unchanged only for 16 days.  相似文献   

11.
Cold-smoked (Salmo salar) salmon samples were surface-inoculated with a cocktail of three nisin-resistant strains of L. monocytogenes (PSU1, PSU2 and PSU21) to a level of approximately 5 x 10(2) or 5 x 10(5) CFU/cm2 of salmon surface. The inoculated smoked salmon samples were vacuum-packaged with control film (no nisin) or nisin-coated plastic films and stored at either 4 or 10 degrees C. When the inoculated smoked salmon samples were packaged with film coated with 2000 IU/cm2 of nisin, a reduction of 3.9 log CFU/cm2 (compared with control) was achieved at either temperature for samples inoculated with 5 x 10(2) CFU/cm(2 of L. monocytogenes after 56 (4 degrees C) and 49 (10 degrees C) days of storage while reductions of 2.4 and 0.7 log CFU/cm2 were achieved for samples inoculated with a high level of L. monocytogenes (5 x 10(5) CFU/cm2) after 58 (4 degrees C) and 43 (10 degrees C) days, respectively. For samples packaged in film coated with 500 IU/cm2 of nisin, reductions of 0.5 and 1.7 log CFU/cm2 were achieved for samples inoculated with a low level of L. monocytogenes (5 x 10(2) CFU/cm2) after 56 (4 degrees C) and 49 (10 degrees C) days of storage while reductions of 1.8 and 0.8 log CFU/cm2 were achieved for samples inoculated with high level of L. monocytogenes after 58(4 degrees C) and 43 (10 degrees C) days, respectively. In addition, nisin inhibited the proliferation of background microbiota on smoked salmon in a concentration-dependent manner at both storage temperatures although the bacteriostatic effect was more pronounced at refrigeration temperature. This work highlights the potential for incorporating nisin into plastic films for enhancing the microbial safety of smoked salmon as well as controlling its microbial spoilage.  相似文献   

12.
The antimicrobial effect of thyme essential oil (EO) at 0.3%, 0.6%, or 0.9%, nisin at 500 or 1000IU/g, and their combination against Listeria monocytogenes was examined in both tryptic soy broth (TSB) and minced beef meat. Thyme EO at 0.3% possessed a weak antibacterial activity against the pathogen in TSB, whereas at 0.9% showed unacceptable organoleptic properties in minced meat. Thus, only the level of 0.6% of EO was further examined against the pathogen in minced meat. Treatment of minced beef meat with nisin at 500 or 1000IU/g showed antibacterial activity against L. monocytogenes, which was dependent on the concentration level of nisin and the strains used. Treatment of minced beef meat with EO at 0.6% showed stronger inhibitory activity against L. monocytogenes than treatment with nisin at 500 or 1000IU/g. All treatments showed stronger inhibitory activity against the pathogens at 10 degrees C than at 4 degrees C. The combined addition of EO at 0.6% and nisin at 500 or 1000IU/g showed a synergistic activity against the pathogen. Most efficient among treatments was the combination of EO at 0.6% with nisin at 1000IU/g, which decreased the population of L. monocytogenes below the official limit of the European Union recently set at 2logcfu/g, during storage at 4 degrees C.  相似文献   

13.
This study evaluated post-processing chemical solutions for their antilisterial effects on commercial smoked sausage formulated with or without 1.5% potassium lactate plus 0.05% sodium diacetate, and contaminated (approximately 3-4 log cfu/cm(2)) with 10-strain composite Listeria monocytogenes inocula prepared under various conditions. Inoculated samples were left untreated, or were immersed (2 min, 25 +/- 2 degrees C) in solutions of acetic acid (2.5%), lactic acid (2.5%), potassium benzoate (5%) or Nisaplin (0.5%, equivalent to 5000 IU/ml of nisin) alone, and in sequence (Nisaplin followed by acetic acid, lactic acid or potassium benzoate), before vacuum packaging and storage at 10 degrees C (48 days). Acetic acid, lactic acid or potassium benzoate applied alone reduced initial L. monocytogenes populations by 0.4-1.5 log cfu/cm(2), while treatments including Nisaplin caused reductions of 2.1-3.3 log cfu/cm(2). L. monocytogenes on untreated sausage formulated with antimicrobials had a lag phase duration of 10.2 days and maximum specific growth rate (mu(max)) of 0.089 per day, compared to no lag phase and mu(max) of 0.300 per day for L. monocytogenes on untreated product that did not contain antimicrobials in the formulation. The immersion treatments inhibited growth of the pathogen for 4.9-14.8 days on sausage formulated without potassium lactate-sodium diacetate; however, in all cases significant (P < 0.05) growth occurred by the end of storage. The antilisterial activity of chemical solutions was greatly enhanced when applied to product formulated with antimicrobials; growth was completely inhibited on sausage treated with acetic or lactic acid alone, and in sequence with Nisaplin. In general, habituation (15 degrees C, 7 days) of L. monocytogenes cells, planktonically or as attached cells to stainless-steel coupons in sausage homogenate prior to contamination of product, resulted in shorter lag phase durations compared with cells cultivated planktonically in a broth medium. Furthermore, when present, high levels of spoilage flora were found to suppress growth of the pathogen. Findings of this study could be useful to US meat processors in their efforts to select required regulatory alternatives for control of post-processing contamination in meat products.  相似文献   

14.
Individual or combined effects of nisin (100 or 200 IU/ml) and the lactoperoxidase system (LPS) were analysed against 1 x 10(4) cfu/ml Listeria monocytogenes ATCC 15313 cells in skim milk, at 25 degrees C for 15 days. Nisin induced an immediate bactericidal effect and LPS a 48 h bacteriostatic phase which in both cases was followed by re-growth of L. monocytogenes. LPS and nisin added together at t0 showed a synergistic and lasting bactericidal effect which after 8 days and until 15 days resulted in no detectable cells in 1 ml of milk. When LPS was added to cells already in contact with 100 or 200 IU/ml nisin for a period of 4 h, the inhibitory activity was enhanced with no L. monocytogenes detectable after 72 or 48 h, respectively, and until 15 days. When LPS was added after 12 h, the nisin bactericidal phase was followed by re-growth. When nisin, 100 or 200 UI/ml, was added to cells already in contact with LPS over 24 h, L. monocytogenes was not detectable after 196 and 244 h, respectively, without any re-growth. For nisin addition after 72 h, cell counts were 8 log10 cycles lower than in the control milk after 196 h, but population levels were similar to the control within 15 days. The best combination to inhibit L. monocytogenes ATCC 15313 was nisin present at t0 followed by the LPS addition 4 h later, when the maximum inhibitory effect of nisin was reached.  相似文献   

15.
Whole milk, skim milk and an emulsion of milk fat in water, inoculated with approx. 10(5) cfu/ml of Listeria innocua, were treated at 30 degrees C with 100 IU/ml of nisin, homogenization at 200 bar or both procedures. Nisin activity and survival of L. innocua after treatments were determined. Recovery of nisin activity from non-homogenized whole milk treated with 100 IU/ml of nisin was complete, whereas a loss of 18 to 28% of activity was detected in non-homogenized fat-in-water emulsion. Loss in nisin activity due to homogenization represented up to 64% in whole milk and 62% in fat-in-water emulsion. Nisin addition by itself achieved a reduction in L. innocua counts of 3.7-3.8 log units in whole milk and 3.6 log units in fat-in-water emulsion compared to numbers in untreated samples. When nisin-containing whole milk and fat-in-water emulsion were homogenized, L. innocua counts were only reduced by 2.6-2.9 log units and 2.5 log units, respectively, compared to numbers in untreated samples. Homogenization of nisin-containing skim milk resulted in a loss of nisin activity of 20% but achieved a reduction of 3.0 log units in L. innocua counts.  相似文献   

16.
Lactobacillus reuteri strain 12002 was used for reuterin production in the two-step fermentation process. A batch culture fermentation was used to produce a maximum biomass of L. reuteri. Then cells were harvested, resuspended in a glycerol-water solution, and anaerobically incubated to produce reuterin. The lyophilized supernatants (approximately 4000 activity units (AU) of reuterin per ml) were diluted in distilled water for decontamination and preservation trials. The MIC values of reuterin for Escherichia coli O157:H7 and Listeria monocytogenes were 4 and 8 AU/ml, respectively. In meat decontamination experiments, the surface of cooked pork was inoculated with either L. monocytogenes or E. coli O157:H7 at a level of approximately log10 5 CFU/cm2, incubated for 30 min at 7 degrees C, and decontaminated by exposure to reuterin (500 AU/ml). The bactericidal effect of reuterin was analyzed 15 s and 24 h after exposure at 7 degrees C. After 15 s of exposure to reuterin, viable numbers decreased by 0.45 and 0.3 log10 CFU/cm2 for E. coli O157:H7 and L. monocytogenes, respectively. After 24 h the numbers decreased by 2.7 log10 CFU/cm2 for E. coli O157:H7 and by 0.63 log10 CFU/cm2 for L. monocytogenes. In the same experiment, the combined effect of reuterin and lactic acid was also investigated. Adding lactic acid (5%, vol/vol) to reuterin significantly enhanced (P < or = 0.05) the efficacy of reuterin. No additional effect (P < or = 0.05) was found when ethanol (40%) was added to the mixture of reuterin and lactic acid. To evaluate the preservative effect of reuterin during meat storage, reuterin was added to raw ground pork contaminated with E. coli O157:H7 or L. monocytogenes. Reuterin at a concentration of 100 AU/g resulted in a 5.0-log10 reduction of the viability of E. coli O157:H7 after 1 day of storage at 7 degrees C. Reuterin at a concentration of 250 AU/g reduced the number of the viable cells of L. monocytogenes by log10 3.0 cycles after 1 week of storage at 7 degrees C.  相似文献   

17.
Recontamination of cooked ready-to-eat (RTE) chicken and beef products with Listeria monocytogenes has been a major safety concern. Natural antimicrobials in combinations can be an alternative approach for controlling L. monocytogenes. Therefore, the objectives of this study were to evaluate the inhibitory activities against L. monocytogenes of nisin (6,400 IU/ ml), grape seed extract (GSE; 1%), and the combination of nisin and GSE both in tryptic soy broth with 0.6% yeast extract (TSBYE) and on the surface of full-fat turkey frankfurters. TSBYE was incubated at 37 degrees C for 72 h and turkey frankfurters at 4 or 10'C for 28 days. Inocula were 6.7 or 5 log CFU per ml or g for TSBYE or frankfurters, respectively. After 72 h in TSBYE, nisin alone did not show any inhibitory activity against L. monocytogenes. The combination of nisin and GSE gave the greatest inhibitory activity in both TSBYE and on turkey frankfurters with reductions of L. monocytogenes populations to undetectable levels after 15 h and 21 days, respectively. This combination of two natural antimicrobials has the potential to control the growth and recontamination of L. monocytogenes on RTE meat products.  相似文献   

18.
Listeria monocytogenes, a major foodborne pathogen, has been responsible for many outbreaks and recalls. Organic acids and antimicrobial peptides (bacteriocins) such as nisin are produced by lactic acid bacteria and are commercially used to control pathogens in some foods. This study examined the effects of lactic acid (LA) and its salts in combination with a commercial nisin preparation on the growth of L. monocytogenes Scott A and its nisin-resistant mutant. Because of an increase in its activity at a lower pH, nisin was more active against L. monocytogenes when used in combination with LA. Most of the salts of LA, including potassium lactate, at up to 5% partially inhibited the growth of L. monocytogenes and had no synergy with nisin. Zinc and aluminum lactate, as well as zinc and aluminum chloride (0.1%), worked synergistically with 100 IU of nisin per ml to control the growth of L. monocytogenes Scott A. No synergy was observed when zinc or aluminum lactate was used with nisin against nisin-resistant L. monocytogenes. The nisin-resistant strain was more sensitive to Zn lactate than was wild-type L. monocytogenes Scott A; however, the cellular ATP levels of the nisin-resistant strain were not significantly affected. Changes in the intracellular ATP levels of the wild-type strain support our hypothesis that pretreatment with zinc lactate sensitizes cells to nisin. The similar effects of thesalts of hydrochloric and lactic acids support the hypothesis that metal cations are responsible for synergy with nisin.  相似文献   

19.
Commercially prepared frankfurters were formulated with and without approximately 1.4% potassium lactate and 0.1% sodium diacetate and were subsequently processed in cellulose casings coated with and without nisin (approximately 50,000 IU per square inch of internal surface area) to control the outgrowth of Listeria monocytogenes during refrigerated storage. The frankfurters were inoculated with approximately 5 log CFU per package of a five-strain mixture of L. monocytogenes and then vacuum sealed before being stored at 4 degrees C for 60 to 90 days. Surviving organisms were recovered and enumerated by rinsing each package with 18 ml of sterile 0.1% peptone water and plating onto MOX selective agar. The data for each of two trials were averaged. In packages that contained frankfurters formulated with potassium lactate and sodium diacetate and prepared in nisin-coated casings, L. monocytogenes levels decreased by 1.15 log CFU per package after 90 days of storage. L. monocytogenes levels decreased by 0.95 log CFU per package in frankfurters that were prepared in casings that were not coated with nisin. In packages of frankfurters that were formulated without potassium lactate and sodium diacetate and prepared in nisin-coated casings, L. monocytogenes levels decreased by 0.88 log CFU per package after 15 days of storage but then increased appreciably thereafter over a 60-day period of refrigerated storage. There was also an appreciable increase in pathogen numbers during 60 days of storage in otherwise similar frankfurters formulated without potassium lactate and sodium diacetate prepared in casings that were not coated with nisin. These data confirm that potassium lactate and sodium diacetate display listeriostatic activity as an ingredient of commercial frankfurters. These data also establish that cellulose casings coated with nisin display only moderate antilisterial activity in vacuum-sealed packages of commercially prepared frankfurters during storage at 4 degrees C.  相似文献   

20.
Changes in bacterial counts on beef carcasses at specific points during slaughter and fabrication were determined, and the effectiveness of nisin, lactic acid, and a combination of the lactic acid and nisin in reducing levels of microbiological contamination was assessed. Swab samples were obtained from the surfaces of randomly selected beef carcasses. Carcasses were swabbed from the neck, brisket, and renal site after skinning, splitting, and washing. Treatments involving lactic acid (1.5%), nisin (500 IU/ml), or a mixture of nisin and lactic acid were applied after the neck area was washed. A control group was not sprayed. Results indicated that the highest prevalence of aerobic plate counts (APCs), total coliforms, and Escherichia coli was found in the neck site after splitting, and the lowest level of microbial contamination was found after skinning. Washing with water did not significantly reduce the bacterial load. The largest reduction in APCs, total coliforms, and E. coli occurred on carcasses treated with a mixture of nisin and lactic acid. A mixture of nisin and lactic acid can be applied to beef carcasses through spray washing and can reduce bacterial populations by 2 log units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号