首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
三角形子通道超临界水热工水力特性数值分析   总被引:1,自引:1,他引:0  
目前国际上对超临界水冷堆进行了大量的研究,但对其堆芯内超临界流体流动传热的认识还十分有限.本文采用CFX对超临界水冷堆典型三角形子通道内的流动传热特征进行了CFD研究,对比分析了包壳壁面等热流密度和燃料芯块等体积热流密度两种情况.计算结果表明,不锈钢包壳层的周向导热显著强化了燃料棒圆周上温度分布和传热系数的均匀性,但对二次流和湍流脉动的影响不大.间隙区的湍流脉动主要受几何参数P/D的影响,当P/D<1.3时,湍流交混系数在0.02~0.025之间,当P/D>1.3时,湍流交混系数较小,在温度拟临界点附近区域,存在交混系数的突变.  相似文献   

2.
液态铅铋合金(LBE)是第四代液态金属核反应堆候选冷却剂,由于LBE热物性具有一定的特殊性,亟待对LBE在燃料组件子通道中的流动与传热过程开展研究。本文对LBE在带绕丝燃料棒组件中湍流流动进行数值模拟与分析,将燃料棒壁面温度的数值模拟结果与响应的实验数据相比较,2者具有较高的吻合度,说明数学模型及数值结果具有较高的可靠性与准确性;使用湍流交混系数β表征LBE在不同子通道间、不同燃料棒间隙宽度与燃料棒直径比(S/D)结构下的湍流交混情况,结果表明,不同子通道间β波动程度具有差异性,β的大小与S/D呈负相关。基于不同S/D与雷诺数的计算结果,拟合出不同子通道间β关联式,为绕丝燃料棒三角形排列方式的燃料组件子通道分析程序开发提供交混模型。   相似文献   

3.
快堆燃料组件棒束通道内流动和传热现象分析与研究   总被引:3,自引:3,他引:0  
利用三维计算流体力学软件CFX 12.0对由7根带螺旋状定位绕丝的燃料棒组成的快堆燃料组件典型棒束通道内的流动和传热现象进行了数值模拟。模拟得到不同Re下的压降系数曲线与Nu曲线,并将计算结果与经验公式的计算结果进行了比较,两者符合较好。研究了组件内3类典型子通道的横向流交混效应,分析了3类典型子通道的横向流分布特点,发现角子通道横向流交混强度沿轴向波动较大,而3类子通道的横向流交混强度均存在周期性。研究了中心燃料棒壁面上3个截面的局部换热效应,发现在燃料棒与绕丝接触处传热效果最差,在事故分析时应重点关注。  相似文献   

4.
首先利用先进子通道分析程序(ATHAS)对超临界水冷堆(CGN-SCWR)的双排棒组件进行子通道分析,以考察燃料棒包壳温度等热工参数是否达到安全要求。根据分析结果结合子通道水力直径和冷却剂出口温度,选取一些典型子通道的热工参数结果做详细比对,了解组件中不同类型子通道内的热工参数变化对组件性能的影响。另外,对子通道计算采用的湍流交混系数、轴向摩擦系数和传热关系式进行敏感性分析,以了解经验关系式对计算结果的影响。结果显示:所有热工参数结果均达到设计要求,包壳最高温度为685.3℃,且不同传热关系式的选择对包壳温度的影响明显,最大温差达到了41.3℃。  相似文献   

5.
开展堵塞工况下紧密栅内流体子通道间隙湍流交混研究,对事故工况下燃料组件热工水力行为的预测具有重要意义。本文采用CFD方法对紧密栅内堵塞工况的流体流动现象进行了模拟,模拟结果与相关文献结果吻合较好。进一步对比分析了不同堵塞工况下,堵塞段及堵塞下游的速度场、涡结构以及湍流交混系数分布。所得不同堵塞工况下的横向与轴向湍流交混系数变化规律,可为子通道分析程序的参数设置提供参考。  相似文献   

6.
《核动力工程》2017,(3):132-136
在子通道分析中,湍流交混是冷却剂通道间横向交混的重要组成部分,是由于流体脉动时自然涡团扩散引起的非定向交混。湍流交混的强弱程度将影响通道的局部热工参数,从而影响临界热流密度的预测,是反应堆热工水力设计与分析重点关注的对象。本文针对湍流交混的相关研究进行了综述,包括机理与模型、湍流交混系数、实验方法、计算流体动力学(CFD)方法和子通道软件中的模型等,可作为自主化燃料组件设计和自主化子通道分析软件开发的参考。  相似文献   

7.
为提高燃料组件子通道内两相局部参数预测的准确性,本文基于分布式阻力方法建立精细化定位格架模型,选用合适的摩擦阻力表达式,对格架上的交混翼进行精细化建模,采用Carlucci湍流交混模型计算湍流交混速率,引入阻塞因子计算由定位格架引起的湍流交混效应,并将建立的精细化定位格架模型植入子通道分析程序(ATHAS),对压水堆子通道和棒束实验(PSBT)基准题进行计算分析。结果表明,本文开发的精细化定位格架模型能够提高燃料组件子通道内空泡份额和温度分布的预测准确性,为棒束通道流场、焓场计算和临界热流密度(CHF)预测奠定了基础。   相似文献   

8.
研究基于Cobra-IV程序,开发了适用于超临界水冷堆燃料组件分析的子通道程序.针对超临界水冷堆慢谱双排组件,进行了稳态计算,获取了相关组件热工水力参数.在此基础上,针对单一通道进行了瞬态计算,分析了燃料棒线功率变化和冷却剂流量变化条件下,超临界水冷堆燃料组件的流动和传热的动态响应,为超临界水冷堆组件的优化设计提供了参考.  相似文献   

9.
本文对5×5螺旋十字型棒束(HCF)组件进行热工水力实验,获得了HCF组件的阻力系数和交混系数。测量了螺旋十字型棒束组件的沿程压降,并拟合了阻力系数关系式。基于能量平衡法对HCF组件的交混特性进行了分析。将低温水直接注入棒束组件的子通道中,通过测温导管将T型热电偶固定在子通道的中心位置,并测量了各子通道内的水温分布。HCF组件内的横向交混由湍流交混和流动后掠组成,定义等效交混系数来分析HCF组件内的横向交混率。HCF组件的等效交混系数不随雷诺数的增加而明显变化,其均值为0.019。将等效交混系数输入子通道分析程序Cobra-tf中,计算了子通道内的水温分布。结果表明,水温分布的实验值和计算值符合良好,平均偏差为0.16 ℃。  相似文献   

10.
带格架四棒束超临界水流动传热数值分析   总被引:1,自引:1,他引:0  
棒束内超临界水流动传热是超临界水堆堆芯热工水力研究的重要内容,但对其认识还十分有限。本文针对四棒束内超临界水的流动传热现象开展数值模拟,特别分析了定位格架对棒束通道内流动和传热的影响。结果表明,采用SSG湍流模型计算所得到的棒束壁面温度和实验结果吻合良好,定位格架的存在影响下游流体的速度分布,显著提高格架下游的传热特性,交混系数有大幅上升,使得加热棒周向壁面温度分布更加平均,最高温度出现位置发生改变。  相似文献   

11.
A supercritical water-cooled reactor (SCWR) was proposed as a kind of generation IV reactor in order to improve the efficiency of nuclear reactors. Although investigations on the thermal-hydraulic behavior in SCWR have attracted much attention, there is still a lack of CFD study on the heat transfer of supercritical water in fuel channels. In order to understand the thermal-hydraulic behavior of supercritical fluids in nuclear reactors, the local fluid flow and heat transfer of supercritical water in a 37-element fuel bundle has been studied numerically in this work. Results show that secondary flow appears and the cladding surface temperature (CST) is very nonuniform in the fuel bundle. The maximum cladding surface temperature (MaxCST), which is an important design parameter for SCWR, can be predicted and analyzed using the CFD method. Due to a very large circumferential temperature gradient in cladding surfaces of the fuel bundle, the precise cladding temperature distributions using the CFD method is highly recommended.  相似文献   

12.
本工作从热工水力和中子物理两方面对混合能谱超临界水堆混合谱堆芯的快谱区多层组件进行优化设计。对于轴向以再生区和裂变区交替布置的快谱组件,分别改变其轴向布置方式、燃料芯块直径、栅径比及外围燃料棒距组件盒最小距离,并分析它们对组件热工和物理性能的影响,从而得到较优的参数范围,尽可能提高混合谱超临界水堆的固有安全性和经济性。  相似文献   

13.
基于SCWR堆芯结构的子通道程序开发与应用   总被引:1,自引:1,他引:0  
为能够对超临界水堆(SCWR)堆芯进行子通道分析,开发了新的子通道分析程序SABER。该程序在COBRA程序的基础上改进了网格结构和热传导模型,加入了新的边界条件和水物性模块,以适用于SCWR慢谱燃料组件的子通道分析。为评估程序的适用性,采用该程序对SCWR堆芯概念设计中的慢谱燃料组件进行子通道建模,并进行稳态计算。结果表明,该程序能够用于SCWR堆芯的子通道计算分析,并较好地解决了慢谱组件计算中慢化通道和冷却通道间的热耦合及逆向流动的模拟问题。  相似文献   

14.
A new fuel assembly design for a thermal supercritical water cooled reactor (SCWR) core is proposed. Compared to the existing fuel assemblies, the present fuel assembly has two-rows of fuel rods between the moderator channels, to achieve a more uniform moderation for all fuel rod cells, and subsequently, a more uniform radial power distribution. In addition, a neutron-kinetics/thermal-hydraulics coupling method is developed, to analyze the neutron-physical and thermal-hydraulic behavior of the fuel assembly designs. This coupling method is based on the sub-channel analysis code COBRA-IV for thermal-hydraulics and the neutron-kinetics code SKETCH-N for neutron-physics. Both the COBRA-IV code and the SKETCH-N code are accordingly modified. An interface is established for the data transfer between these two codes. This coupling method is applied to both the one-row fuel assemblies (previous design) and the two-row fuel assemblies (present design). The performance of the two types of fuel assemblies is compared. The results show clearly that the two-row fuel assembly has more favorable neutron-physical and thermal-hydraulic characteristics than the one-row fuel assembly. The effect of various parameters on the fuel assembly performance is discussed. The coupling method is proven to be well suitable for further applications to SCWR fuel assembly design analysis.  相似文献   

15.
Investigations on the thermal-hydraulic behavior in the supercritical water-cooled reactor (SCWR) fuel assembly have obtained a significant attention in the international SCWR community. However, there is still a lack of understanding and ability to predict the heat transfer behavior of supercritical fluids. In this paper, computational fluid dynamics (CFD) analysis is carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical SCWR fuel assembly using commercial CFD code CFX-5.6. Three types of sub-channels, e.g. regular sub-channel, wall sub-channel and corner sub-channel, are analyzed. Effects of various parameters, such as boundary conditions and pitch-to-diameter ratios, on the mixing phenomenon in sub-channels and heat transfer are investigated. The turbulent mixing in tight lattice (P/D = 1.1) is lower than that in wide lattice (P/D > 1.1), whereas, the effect of pitch-to-diameter ratio on the turbulent mixing is slight at P/D > 1.1. The amplitude of turbulent mixing in wall sub-channel is slightly higher than that in regular sub-channel and is close to that in corner sub-channel. The mixing coefficient in the sub-channel at P/D ≥ 1.2 is in the range from 0.022 to 0.028. The results also show unusual behavior of turbulent mixing in the vicinity of the pseudo-critical point, and further investigation is needed. The mass mixing due to cross flow in wall sub-channel is much stronger than that in regular sub-channel at a same pitch-to-diameter ratio. The mass mixing in wall and regular sub-channels, especially at small pitch-to-diameter ratio, brings an unfavorable feedback to the heat transfer and strengthens the non-uniformity of the circumferential distribution of heat transfer. The strong mass mixing in corner sub-channel should be paid attention.  相似文献   

16.
Investigations on the thermal-hydraulic behavior in the SCWR fuel assembly have obtained a significant attention in the international SCWR community. However, there is still a lack of understanding of the heat transfer behavior of supercritical fluids. In this paper, the numerical analysis is carried out to study the thermal-hydraulic behaviour in vertical sub-channels cooled by supercritical water. Remarkable differences in characteristics of secondary flow are found, especially in square lattice, between the upward flow and downward flow. The turbulence mixing across sub-channel gap for downward flow is much stronger than that for upward flow in wide lattice when the bulk temperature is lower than pseudo-critical point temperature. For downward flow, heat transfer deterioration phenomenon is suppressed with respect to the case of upward flow at the same conditions.  相似文献   

17.
CFD analysis of thermal-hydraulic behavior in SCWR typical flow channels   总被引:1,自引:0,他引:1  
Investigations on thermal-hydraulic behavior in SCWR fuel assembly have obtained a significant attention in the international SCWR community. However, there is still a lack of understanding and ability to predict the heat transfer behavior of supercritical water. In this paper, CFD analysis is carried out to study the flow and heat transfer behavior of supercritical water in sub-channels of both square and triangular rod bundles. Effect of various parameters, e.g. thermal boundary conditions and pitch-to-diameter ratio on the thermal-hydraulic behavior is investigated. Two boundary conditions, i.e., constant heat flux at the outer surface of cladding and constant heat density in the fuel pin are applied. The results show that the structure of the secondary flow mainly depends on the rod bundle configuration as well as the pitch-to-diameter ratio, whereas, the amplitude of the secondary flow is affected by the thermal boundary conditions, as well. The secondary flow is much stronger in a square lattice than that in a triangular lattice. The turbulence behavior is similar in both square and triangular lattices. The dependence of the amplitude of the turbulent velocity fluctuation across the gap on Reynolds number becomes prominent in both lattices as the pitch-to-diameter ratio increases. The effect of thermal boundary conditions on turbulent velocity fluctuation is negligibly small. For both lattices with small pitch-to-diameter ratios (P/D < 1.3), the mixing coefficient is about 0.022. Both secondary flow and turbulent mixing show unusual behavior in the vicinity of the pseudo-critical point. Further investigation is needed. A strong circumferential non-uniformity of wall temperature and heat transfer is observed in tight lattices at constant heat flux boundary conditions, especially in square lattices. In the case with constant heat density of fuel pin, the circumferential conductive heat transfer significantly reduces the non-uniformity of circumferential distribution of wall temperature and heat transfer, which is favorable for the design of SCWR fuel assemblies.  相似文献   

18.
提出超临界水混合堆快谱区多层燃料组件设计方案。用MCNP与STAFAS程序对多层燃料组件进行初步的中子物理与热工水力性能分析,同时对组件结构参数(栅距与棒径比P/D)进行敏感性研究。结果表明:快谱多层燃料组件设计不仅能够实现核燃料的增殖,且可获得较大的负冷却剂温度反应性系数与燃料温度反应性系数;减小P/D均可提高燃料的转换比,但较小P/D会导致核热点因子增大。适当调整组件裂变区燃料富集度可有效改善组件裂变区轴向功率不均匀性,降低核热点因子。  相似文献   

19.
In the Generation IV International Forum (GIF) program, the supercritical water reactor (SCWR) concept is among the six innovative reactor types selected for development in the near future. In principle the higher efficiency and better economics make the SCWR concept competitive with the current reactor design. Due to different technical challenges that, however exist, fuel assembly design represents a crucial aspect for the success of this concept. In particular large density variations, low moderation, heat transfer enhancement and deterioration have a strong effect on the core design parameters. Only a few computational tools are currently able to perform sub-channel thermal-hydraulic analysis under supercritical water conditions. At JRC-IE the existing sub-channel code COBRA-EN has been improved to work above the critical pressure of water. The water properties package of the IAPWS Industrial Formulation 1997 was integrated in COBRA-EN to compute the Thermodynamic Properties of Water and Steam. New heat transfer and pressure drop correlations more indicated for the supercritical region of water have also been incorporated in the code. As part of the efforts to appraise the new code capabilities, a code assessment was carried out on the hexagonal fuel assembly of a fast supercritical water reactor. COBRA-EN was also applied in combination with the neutronic code MCNP to investigate on the use of hydride fuel in the HPLWR supercritical water fuel assembly. The results showed that COBRA-EN was able to reproduce the results of similar studies with acceptable accuracy. Future activities will focus on the validation of the code against experimental data and the implementation of new features (counter-current moderator channel, wall, and wire-wrap models).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号