首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Methane steam reforming is the most widely used pathway for hydrogen production. In this context, the use of a fixed bed catalytic reactor with a hydrogen-selective membrane is one of the most promising technologies to produce high purity hydrogen gas. In this work, the membrane reactor three-dimensional computational fluid dynamic (CFD) model was developed to investigate the performance. In this model, methane steam reforming global kinetic model has been coupled with the CFD model using User-Defined Function (UDF). Whereas, hydrogen permeation across the membrane is implemented by introducing source and sink formulation. The CFD simulation results were compared to the experimental data, where the developed model successfully captured the experimentally observed trends. We studied the influence of the various operating parameters, as temperature, steam to carbon ratio, sweep gas flow configuration and space velocity on the overall performance. The main observation and attained optimal operation windows from the study was discussed to provide insight into the factors affecting the overall performance.  相似文献   

2.
Herein, a methane steam reforming (MSR) reaction was carried out using a Pd composite membrane reactor packed with a commercial Ru/Al2O3 catalyst under mild operating conditions, to produce hydrogen with CO2 capture. The Pd composite membrane was fabricated on a tubular stainless steel support by the electroless plating (ELP) method. The membrane exhibited a hydrogen permeance of 2.26 × 10?3 mol m2 s?1 Pa?0.5, H2/N2 selectivity of 145 at 773 K, and pressure difference of 20.3 kPa. The MSR reaction, which was carried out at steam to carbon ratio (S/C) = 3.0, gas hourly space velocity (GHSV) = 1700 h?1, and 773 K, showed that methane conversion increased with the pressure difference and reached 79.5% at ΔP = 506 kPa. This value was ~1.9 time higher than the equilibrium value at 773 K and 101 kPa. Comparing with the previous studies which introduced sweeping gas for low hydrogen partial pressure in the permeate stream, very high pressure difference (2500–2900 kPa) for increase of hydrogen recovery and very low GHSV (<150) for increase hydraulic retention time (HRT), our result was worthy of notice. The gas composition monitored during the long-term stability test showed that the permeate side was composed of 97.8 vol% H2, and the retentate side contained 67.8 vol% CO2 with 22.2 vol% CH4. When energy was recovered by CH4 combustion in the retentate streams, pre-combustion carbon capture was accomplished using the Pd-based composite membrane reactor.  相似文献   

3.
The methanol steam reforming (MSR) performance in a microchannel reactor is directly related to the flow pattern design of the microchannel reactor. Hydrogen production improvements can be achieved by optimal design of the flow pattern. In this study, an A-type microchannel reactor with a flow pattern design of one inlet and two outlets was applied to conduct the MSR for hydrogen production. The MSR performance of the A-type microchannel reactor was investigated through numerical analysis by establishing a three-dimensional simulation model and compared with that of the conventional Z-type microchannel reactor. Experiments were also conducted to test the MSR performance and validate the accuracy of the simulation model. The results showed that compared with the conventional Z-type microchannel reactor, the species distributions in the A-type microchannel reactor were more homogeneous. In addition, compared with the Z-type microchannel reactor, the A-type microchannel reactor was shown to effectively increase the methanol conversion rate by up to 8% and decrease the pressure drop by about 20%, regardless of a slightly higher CO mole fraction. It was also noted that with various quantities of microchannels and microchannel cross sections, the A-type microchannel reactor was still more competitive in terms of a higher methanol conversion rate and a lower pressure drop.  相似文献   

4.
The entire experiments were conducted for microchannel methanol steam reforming, by which, the selection of catalyst, the operating parameters and the configuration of microchannels were discussed thoroughly. It was found that the higher the Cu concentration is, the more the corresponding active surface area of Cu will be, thereby improving the catalytic activity. The Cu-to-Zn ratio in Cu/ZnO/Al2O3 catalyst should be set at 1:1. The impacts of reaction temperature, feed flow rate, mixture temperature, and H2O-to-CH3OH molar ratio on the methanol conversion rate were also revealed and discussed. Characteristics of micro-reactors with various microchannels, including that 20 mm and 50 mm in length, as well as non-parallel microchannels, were investigated. It was found that the increase of microchannel length can improve the methanol conversion rate significantly. Besides, non-parallel microchannels help to maintain flow and temperature distribution uniformity, which can improve the performance of micro-reactor. In the present experiments, the presence of CO was under the condition that the methanol conversion rate was above 70%.  相似文献   

5.
Kinetics of methane steam reforming for hydrogen production has been studied through experiment in a micro-channel reactor over coating catalyst. The catalyst coating prepared by cold spray on stainless steel substrate is based on a mixture of Ni–Al oxides which is normally employed in industry for methane primary steam reforming. Two kinetic laws namely parallel as well as inverse models have been derived at atmospheric pressure, and power law type kinetics have been established using non-linear least squares optimization. With the above kinetics, simulation study has been carried out to find out temperature distribution in the micro-channel over coating catalyst at two different types of boundary conditions. The results show a quite different “cold spot” character and reactants, products distribution character in the reaction channel due to its own distinct heat and mass transfer features. The kinetics and simulation study results can be applied in aid of micro-channel reactor design, and suggestion has been proposed for catalytic coating preparation and optimization.  相似文献   

6.
Hydrogen production by steam reforming of methanol was studied over several Cu/SAB-15-based nanocatalysts in a parallel-type microchannel reactor. The catalysts were prepared through impregnation method and XRD, BET, FT-IR, FE-SEM, TEM, H2-TPR and TGA techniques were used to characterize surface and structural properties of the synthesized catalysts. The effects of reaction temperature, WHSV and S/C molar ratio on the methanol conversion and selectivities of the gaseous products were studied. Then, effects of the metallic promoters were investigated to improve performance of the catalysts. It was revealed that ZnO and CeO2 promoters have positive effects on decreasing CO selectivity and ZrO2 promotes methanol conversion. Furthermore, ZrO2 and CeO2 were declared to improve stability of the catalyst. Among the evaluated catalysts, Cu/ZnO/CeO2/ZrO2/SBA-15 can provide optimal methanol conversion with low CO concentration in the gaseous products. For this catalyst, the methanol conversion and hydrogen selectivity reached 95.2% and 94.6%, respectively.  相似文献   

7.
Oxidative steam reforming of methane to synthesis gas (syngas) over an alumina supported bimetallic Pt–Rh catalyst was comparatively investigated in coated and packed microchannel reactors. In the first configuration, thin layers of catalysts are coated on opposite walls of a single microchannel, while the second one is described by particulate catalysts packed into an empty microchannel of dimensions identical with the first one. Both geometries are compared on the basis of methane conversion and CO selectivity measured at different values of parameters, namely reaction temperature (773–923 K), molar steam-to-carbon (S/C = 0–3.0) and oxygen-to-carbon (O2/C = 0.47–0.63) ratios in the feed, and contact time (0.36–0.71 mg min cm−3). Although methane conversions are found to be comparable, the coated catalyst gave significantly higher CO selectivities than the packed counterpart in the whole parameter range. Increase in all of the parameter values led to improvement in methane conversion, while CO selectivity increased only with temperature and contact time. Molar H2/CO ratios obtained in the coated microchannel reactor are found to vary between 1.0 and 3.0 which are at least three times smaller than those produced in the packed microchannel reactor. Catalyst deactivation is not detected in both configurations. Stable operation up to 72 h over coated microchannel verified mechanical and chemical stability of the Pt–Rh coating that produced syngas with H2/CO ratio of 2.12 at temperatures lower than employed in industrial reformers. Different flow distribution properties of coated and packed microchannels seem to play roles in affecting the product distribution.  相似文献   

8.
A distributed mathematical model for thermally coupled membrane reactor that is composed of three channels is developed for methane steam reforming. Methane combustion takes place in the first channel on a Pt/δ–Al2O3Pt/δAl2O3 catalyst layer that supplies the necessary heat for the endothermic steam reforming reaction. In the second channel, catalytic steam reforming reactions take place in the presence of Ni/MgO–Al2O3 catalyst. The combustion catalyst forms a thin layer next to the reactor wall to minimize the heat transfer resistance. Selective permeation of hydrogen through the palladium membrane is achieved either by co-current or counter-current flow of sweep gas through the third channel. The burner is modeled as a monolith reactor and the reformer is assumed to behave as a pseudo-homogenous reactor. The mass and energy balance equations for the thermally coupled membrane reactor form a set of 22 coupled ordinary differential equations. With the application of appropriate boundary conditions, the distributed reactor model for steady-state operation is solved as a boundary value problem. The model equations are discretized using spline collocation on finite elements. The discretized nonlinear modeling equations, along with the boundary conditions, form a system of algebraic equations that are solved using the trust region dogleg method. The performance of the reactor is numerically investigated for various key operating variables such as inlet fuel concentration, inlet steam/methane ratio, inlet reformer gas temperature and inlet reformer gas velocity. Simulations for both the co-current and the countercurrent flow modes are also performed using different sweep gas flow rates. For each case, the reactor performance is analyzed based on methane conversion and hydrogen recovery yield.  相似文献   

9.
A compartment model was developed to describe the flow pattern of gas within the dense zone of a membrane-assisted fluidized-bed reactor (MAFBR), in the bubbling mode of operation for steam reforming of methane both with (adiabatic) and without (isothermal) entering oxygen. Considering such a flow pattern and using the experimental data reported elsewhere [Roy S, Pruden BB, Adris AM, Grace JR, Lim CJ. Fluidized-bed steam methane reforming with oxygen input. Chem Eng Sci 1999; 54:2095–2102.], the parameters of the developed model (i.e., number of compartments for the bubble and emulsion phases) were determined and fair agreements were obtained between model predictions and experimental data. The developed model was utilized to describe the behavior of an industrial scale adiabatic and isothermal MAFBR. Moreover, the influences of various operating and design parameters such as steam-to-methane ratio (SMR), oxygen-to-methane ratio (OMR), operating temperature and pressure, and the number of hydrogen membrane tubes on the performance capability of the MAFBR were investigated. Furthermore, the performance capability of the MAFBR was optimized subject to the various operating and design constraints, including 1 ≤ SMR ≤ 4 and 500 ≤ T ≤ 1250 K, in the bubbling regime.  相似文献   

10.
The effect of non-uniform temperature on the sorption-enhanced steam methane reforming (SE-SMR) in a tubular fixed-bed reactor with a constant wall temperature of 600 °C is investigated numerically by an experimentally verified unsteady two-dimensional model. The reactor uses Ni/Al2O3 as the reforming catalyst and CaO as the sorbent. The reaction of SMR is enhanced by removing the CO2 through the reaction of CaO + CO2 → CaCO3 based on the Le Chatelier's principle. A non-uniform temperature distribution instead of a uniform temperature in the reactor appears due to the rapid endothermic reaction of SMR followed by an exothermic reaction of CO2 sorption. For a small weight hourly space velocity (WHSV) of 0.67 h?1 before the CO2 breakthrough, both a low and a high temperature regions exist simultaneously in the catalyst/sorbent bed, and their sizes are enlarged and the temperature distribution is more non-uniform for a larger tube diameter (D). Both the CH4 conversion and the H2 molar fraction are slightly increased with the increase of D. Based on the parameters adopted in this work, the CH4 conversion, the H2 and CO molar fractions at D = 60 mm are 84.6%, 94.4%, and 0.63%, respectively. After CO2 breakthrough, the reaction of SMR dominates, and the reactor performance is remarkably reduced due to low reactor temperature.For a higher value of WHSV (4.03 h?1) before CO2 breakthrough, both the reaction times for SMR and CO2 sorption become much shorter. The size of low temperature region becomes larger, and the high temperature region inside the catalyst/sorbent bed doesn't exist for D ≥ 30 mm. The maximum temperature difference inside the catalyst/sorbent bed is greater than 67 °C. Both the CH4 conversion and H2 molar fraction are slightly decreased with the increase of D. However, this phenomenon is qualitatively opposite to that for small WHSV of 0.67 h?1. The CH4 conversion and H2 molar fraction at D = 60 mm are 52.6% and 78.7%, respectively, which are much lower than those for WHSV = 0.67 h?1.  相似文献   

11.
A methane steam reforming process for producing mainly hydrogen in an atmospheric-pressure microwave plasma reactor is demonstrated. Nano carbon powders, COx, C2H2, C2H4, and HCN were also formed. Intermediates such as OH, NH, CH, and active N2 were identified using optical emission spectroscopy. The selectivity of H2 was greater than 92.7% at inlet H2O/CH4 molar ratio (R) ≧ 0.5, and was higher than that obtained using methane plasmalysis because steam inhibited the formation of C2H2. The highest methane conversion was obtained at R = 1, reaching 91.6%, with the lowest specific energy consumption of H2 formation at [CH4]in = 5%, 1.0 kW, and 12 slpm. The plasma-assisted catalysis process, which packed Ni/Al2O3 catalysts in the discharge zone and supplied heat using hot effluents, was used to elevate the methane conversion and hydrogen selectivity. However, large amounts of 40–70 nm carbon powder, which is electrically conductive, were produced, resulting in rapid catalyst deactivation due to carbon being deposited on the surface and in the pores of catalysts.  相似文献   

12.
In this experimental work, methane steam reforming (MSR) reaction is performed in a dense Pd-Ag membrane reactor and the influence of pressure on methane conversion, COx-free hydrogen recovery and COx-free hydrogen production is investigated. The reaction is conducted at 450 °C by supplying nitrogen as a sweep gas in co-current flow configuration with respect to the reactants. Three experimental campaigns are realized in the MR packed with Ni-ZrO catalyst, which showed better performances than Ni-Al2O3 used in a previous paper dealing with the same MR system. The first one is directed to keep constant the total pressure in both retentate and permeate sides of the membrane reactor. In the second case study, the total retentate pressure is kept constant at 9.0 bar, while the total permeate pressure is varied between 5.0 and 9.0 bar. As the best result of this work, at 450 °C and 4.0 bar of total pressure difference between retentate and permeate sides, around 65% methane conversion and 1.2 l/h of COx-free hydrogen are reached, further recovering 80% COx-free hydrogen over the total hydrogen produced during the reaction. Moreover, a study on the influence of hydrogen-rich gas mixtures on the hydrogen permeation through the Pd-Ag membrane is also performed and discussed.  相似文献   

13.
Steam methane reforming is an endothermic reaction and it used to produce hydrogen and syngas. In this research, a factorial design is developed for an integrated Pd-based membrane reactor, producing hydrogen by methane steam reaction. In literature, no analogous works are present, because a simple sensitivity analysis is carried out without finding significant factors for the process. The reactor is modelled in MATLAB software using the Numaguchi kinetic. The reactor does not use conventional catalysts, but a Ni(10)/CeLaZr catalyst supported on SSiC ceramic foam. In ANOVA analysis, inlet temperature (550 K-815 K), methane flow rate in the feed (0.1 kmol/h-1 kmol/h), hydrogen permeability (1000 m3μmm2hrbar0.5–3600 m3μmm2hrbar0.5), the thickness of membrane (0.003 m-0.02 m) are the chosen factors. The analyzed responses are: hydrogen yield, carbon dioxide conversion and methane conversion. Results show that only inlet temperature, methane flow rate, their interaction and the thickens of membrane are significant. Also, the optimal operating conditions are obtained with inlet temperature, methane flow rate, hydrogen permeability and thickness of membrane equal to 550 K, 0.1 kmol/h, 3600 m3μmm2hrbar0.5 and 0.003 m.  相似文献   

14.
A bench-scale annular microchannel reactor (AMR) prototype with microchannel width of 0.3 mm and total catalyst length of 9.53 × 10−2 m active for the endothermic steam reforming of methane is presented. Experimental results at a steam to methane feed molar ratio of 3.3:1, reactor temperature of 1023 K, and pressure of 11 bar confirm catalyst power densities upwards of 1380 W per cm3 of catalyst at hydrogen yields >98% of thermodynamic equilibrium. A two-dimensional steady-state computational fluid dynamic model of the AMR prototype was validated using experimental data and subsequently employed to identify suitable operating conditions for an envisioned mass-production AMR design with 0.3 mm annular channel width and a single catalyst length of 254 mm. Thermal efficiencies, defined based upon methane and product hydrogen higher heating values (HHVs), of 72.7–57.7% were obtained from simulations for methane capacities of 0.5–2S LPM (space velocities of 195,000–782,000 h−1) at hydrogen yields corresponding to 99%–75% of equilibrium values. Under these conditions, analysis of local composition, temperature and pressure indicated that catalyst deactivation via coke formation or Nickel oxidation is not thermodynamically favorable. Lastly, initial analysis of an envisioned 10 kW autothermal reformer combining 19 parallel AMRs within a single methane-air combustion chamber, based upon existing manufacturing capabilities within Power & Energy, Inc., is presented.  相似文献   

15.
In this work, a three-dimensional simulation of the sorption-enhanced glycerol reforming (SEGR) process for hydrogen production in a membrane-assisted fluidized bed reactor is carried out by means of the multi-fluid model coupling with chemical kinetics model and membrane separation model. The mutual interaction mechanism of the two enhancing methods including membrane hydrogen separation and carbon dioxide sorption is revealed. The results indicate that the carbon dioxide sorption can hinder the concentration polarization resistance and improve the hydrogen permeation rate while the scope of densified zones is enlarged. Meanwhile, the increase of hydrogen separation degree is also beneficial to the carbon dioxide sorption performance. In addition, the utilization of bi-functional sorbent-catalyst particles can further promote the sorption-enhanced reforming process compared to the conventional two-pellet design.  相似文献   

16.
Methane steam reforming will still account for most of hydrogen production in the coming decades. Membrane reactor can play a key role in both energy saving and process/equipment compactness, particularly for its decentralized applications. Here we design a particles-based packed-bed membrane reactor and explore the operational window and design challenges by conducting systematic study experimentally and computationally, particularly emphasizing geometrical scale of membrane reactor and catalyst activity. The results show that membrane reactor presents maximum hydrogen flux by consuming unit methane under the optimized operation conditions of GHSV (i.e., 1134 hr?1) and steam-to-carbon ratio (i.e., 2), and computational study shows that optimal operation window is around 30 atm and 773.15 K. Moreover, the design criteria of “Catalyst activity – Membrane performance – Radial depth” is revealed quantitatively and catalyst activity is identified as the key limiting factor for further process intensification. Briefly, these results shed some lights on operation, optimal design, and further improvement of membrane reactor in methane steam reforming.  相似文献   

17.
In order to lower the emission from idling heavy-duty trucks auxiliary power units can be implemented. Due to limited space available on-board the truck the units needs to be both efficient and compact. One alternative for these units is a fuel cell supplied with hydrogen from a fuel reformer. Today, mostly monolithic reactors are used in the field of oxidative steam reforming of fuels, which has some challenges that need to be addressed before a possible breakthrough occurs on the market. One is the temperature gradient developed over the length of the monolith as a consequence of the sequential reactions. This could be improved by using a metallic micro reactor with better heat integration between the reaction zones and further improving the integration with multiple air inlets along the catalytic bed.  相似文献   

18.
In this experimental work, the ethanol steam reforming reaction is performed in a porous stainless steel supported palladium membrane reactor with the aim of investigating the influence of the membrane characteristics as well as of the reaction pressure. The membrane is prepared by electroless plating technique with the palladium layer around 25 μm deposited onto a stainless steel tubular macroporous support. The experimental campaign is directed both towards permeation and reaction tests. Firstly, pure He and H2 are supplied separately between 350 and 400 °C in the MR in permeator modality for calculating the ideal selectivity αH2/He. Thus, the MR is packed with 3 g of a commercial Co/Al2O3 catalyst and reaction tests are performed at 400 °C, by varying the reaction pressure from 3.0 to 8.0 bar. Experimental results in terms of ethanol conversions as well as recovery and purity of hydrogen are given and compared with some results in the same research field from the open literature.As best result of this work, 100% ethanol conversion is reached at 400 °C and 8 bar, recovering a hydrogen-rich stream consisting of more than 50% over the total hydrogen produced from reaction, having a purity around 65%.  相似文献   

19.
Oxidative steam reforming of ethanol (OSRE) was studied over Rh/CeO2/Al2O3 catalysts in a micro-channel reactor. First, the catalyst support, Al2O3, was deposited on to the metallic substrate by washcoating and then the CeO2 and active metal were sequentially impregnated. The effect of support composition as well as active metal composition on oxidative steam reforming of ethanol in a micro-channel reactor was studied at atmospheric pressure, with water to ethanol molar ratio of 6 and oxygen to ethanol molar ratio ranging from 0.5 to 1.5, over a temperature range of 350-550 °C. Ceria added to 1%Rh/Al2O3 showed higher activity and selectivity than 1%Rh/Al2O3 alone. Out of the various catalysts tested, 2%Rh/20%CeO2/Al2O3 performed well in terms of activity, selectivity and stability. The OSRE performance was compared with that of SRE over 2%Rh/20%CeO2/Al2O3 catalyst at identical operating conditions. Compared to SRE, the activity in OSRE was higher; however the selectivity to desired products was slightly lower. The H2 yield obtained in OSRE was ∼112 m3 kg−1 h−1, as compared to ∼128 m3 kg−1 h−1 in SRE. The stability test performed on 2%Rh/20%CeO2/Al2O3 at 500 °C for OSRE showed that the catalyst was stable for ∼40 h and then started to deactivate slowly. The comparison between packed bed reactor and micro-channel reactor showed that the micro-channel reactor can be used for OSRE to produce hydrogen without any diffusional effects in the catalyst layer.  相似文献   

20.
Efficient conversion of methane to hydrogen has emerged as a significant challenge to realizing fuel cell-based energy systems. Autothermal microchannel reactors, coupling of exothermic and endothermic reactions in parallel channels, have become one of the most promising technologies in the field of hydrogen production. Such reactors were utilized as an intensified design for conducting the endothermic steam methane reforming reaction. The energy required by the endothermic process is supplied directly through the separating plates of the reactor structure from the exothermic process occurring on the opposing side. Optimal design problems associated with transport phenomena in such an autothermal system were analyzed. Various methods for designing and operating autothermal reactors employed in steam methane reforming were discussed. Computational fluid dynamics simulations were performed to identify the underlying principles of process intensification, and to delineate several design and operational features of the intensified reforming process. The results indicated that the autothermal reactor is preferable to be thermally conductive to ensure its structural integrity and maximum operating regime. However, the thermal properties of the reactor structure are not essential due to efficient heat transfer existing between endothermic and exothermic process streams. A reactor design which minimizes the mass transfer resistance is highly required, and the channel dimension is of critical importance. Furthermore, the challenges presented by the efficient operation of the autothermal system were identified, along with demonstrating the implementation of transport management in order to improve overall reactor performance and to mitigate extreme temperature excursions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号