首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Hydrogenase (Hyd) activity and H2 production by Escherichia coli were studied at a low pH. H2 production at pH 5.5 under glycerol fermentation was shown to be ∼1.5-fold higher than that at pH 6.5 or above but less than that under glucose fermentation. It was inhibited by N,N′-dicyclohexylcarbodiimide: H2 production inhibition was increased with decreasing pH and almost maximal inhibition was observed at pH 5.5. The data on H2 production by single and double mutants with defects in different Hyd-enzymes and in fhlA gene suggest that under glycerol fermentation at a low pH, Hyd-1, Hyd-2 and Hyd-4 were operating in a reversed, non-H2 producing mode. Moreover, a role of fhlA gene in Hyd-3 and Hyd-4 activity in H2 production is proposed under glucose fermentation at a low pH.  相似文献   

2.
Escherichia coli produces molecular hydrogen (H2) during glucose fermentation. This production of H2 occurs via multiple and reversible membrane-associated hydrogenases (Hyd). Dependence of H2 producing rate (VH2)(VH2) by Hyd-4 (hyf) on glucose concentration was studied at different pHs. During growth on 0.2% glucose at pH 7.5 in JRG3615 (hyfA-B) and JRG3621 (hyfB-R  ) mutants (VH2)(VH2) was decreased ∼6.7 and ∼5 fold, respectively, compared to wild type. Only in JRG3621 mutant at pH 6.5 and 5.5 (VH2)(VH2) was severely decreased ∼7.8 and ∼3.8 fold, respectively. But when cells were grown on 0.8% glucose no difference between wild type and mutants was detected at any of the tested pHs. The results indicate Hyd-4 H2 producing activity inhibition by high concentration of glucose mainly at pH 7.5. This is of significance to regulate Hyd activity and H2 production by E. coli during fermentation.  相似文献   

3.
Hydrogen (H2)-producing hydrogenase (Hyd) activity of E. coli wild type and mutants with defects in subunits of Hyd-3 or Hyd-4 during fermentation at different glucose concentrations and pHs was studied. Hyd-3 was mainly responsible for H2 production but a significant contribution by Hyd-4 to total H2 production depended on the glucose concentration and pH. Surprisingly, not all Hyd-3 or Hyd-4 subunits contributed towards H2 production. Hyd-4 mainly exhibited H2-oxidizing activity in cells growing on 0.2% glucose at pH 7.5, while at pH 5.5 it had a significant impact on H2 production. Importantly, a hyfG mutant (lacking the large subunit of Hyd-4) had a ~2.2 fold decrease in H2 production when cells were grown with 0.2% glucose. A similar role of Hyd-4 was shown at pH 6.5 grown with 0.8% glucose. This study provides new information to allow improvements in H2 production yield and in our general understanding of H2 metabolism.  相似文献   

4.
In this study, the new strategy for long term bio-hydrogen (H2) production using different substrates and waste materials is presented. Growth characteristics and H2 production were investigated upon consumption of 0.4% xylose and 1% glycerol alone (which were optimal) or their mixture by Escherichia coli BW25113 wild type parental strain (PS) and ΔhyaB, ΔhybC, ΔhycE, ΔhyfG mutants with genes deletions for key subunits of hydrogenase (Hyd)-1 to Hyd-4, respectively, in high and low buffer capacity peptone (HPM, LPM) mediums, pH 5.5 and 7.5. Overall, pH 5.5 negatively affected bacterial growth and H2 production. At pH 7.5, apart from Hyd-3 and Hyd-4 mutants, upon growth of PS, Hyd-1 and Hyd-2 mutants drop of Pt redox electrode readings from positive (~+150 mV) to negative (of ?400 to ?550 mV) values was detected during log growth phase mentioning H2 formation. Xylose and glycerol co-utilization did not affect PS and Hyd-1 and Hyd-2 mutant's biomass and H2 formation during log growth phase in LPM, but ~1.5 fold stimulated these parameters, especially in HPM, pH 7.5, during prolonged 96 h bacterial growth. Roles of Hyd-3 and Hyd-4 in H2 production; and Hyd-1 and Hyd-2 in H2 oxidation during bacterial log growth phase were stated under xylose and glycerol co-fermenting conditions. The results obtained might be valuable for industrial long term H2 production by bacteria using mixture of carbon sources and combining various organic waste materials.  相似文献   

5.
6.
Hydrogen is a carbon-neutral energy feedstock which is produced during fermentation of various carbon sources. The genomes of clostridia encode mainly [Fe-Fe]-hydrogenases. Clostridium beijerinckii DSM791 performed anaerobic fermentation of glycerol in batch culture at pH 7.5 and pH 5.5 and produced H2. At pH 7.5, the glycerol consumption rate was 3.7 g/g cell mass/h, which was higher than that at pH 5.5. H2 production reached 5 mmol/h/g cell mass at pH 7.5. The specific hydrogenase activity was ~1.4 fold higher if cells were grown on glycerol compared to cells grown on glucose. Single (Fe2+, Fe3+, Ni2+) or mixed supply of metals (Fe2+ and Ni2+) increased the specific hydrogenase activity by ~50%. These results suggest that C. beijerinckii DSM791 could be used as a potential H2 producer. It may help to further enhance H2 production using different industrial or agricultural wastes where glycerol and other carbon sources are present.  相似文献   

7.
Biohydrogen production by Escherichia coli during fermentation of the mixture of glycerol, glucose and formate at different pH values was studied. Employing mutants lacking large subunits of different hydrogenases (Hyd), it was reported that, at pH 7.5, H2 production was produced except in a hyaB hybC hycE triple mutant, thus suggesting compensatory H2-producing functions of the Hyd enzymes. Activity of Hyd-4 was revealed in glucose assays at pH 7.5 in the triple mutant whereby 62% of the wild type level of H2 production was derived from Hyd-4. In formate assays, it was shown, that, first, the hyaB hybC double mutant had a H2 production ~3 fold higher than wild type, indicating that Hyd-1 and Hyd-2 oxidize H2, and second, that at pH 5.5, Hyd-4 and Hyd-3 were responsible for H2 production. These findings are significant when applying various carbon sources such as sugars, alcohol and organic acids for biohydrogen production.  相似文献   

8.
Hydrogen (H2) gas production in batch cultures was studied upon utilization of the mixture of glucose, glycerol and formic acid by Escherichia coli BW25113 wild type (wt) at pH of 5.5–7.5. At pH 7.5H2 was continuously produced during 240 h but at pH 6.5 and 5.5 it was detected till 168 h and 120 h, respectively. Specific growth rate (μ) of wt was the highest (1.05 h?1) at pH 6.5. Moreover, at pH 5.5 in hycE μ decreased by ~4.14 fold compared to wt, suggesting major role of Hyd-3 in cell growth. H2 yield (8.8 mmol H2 L?1) was the highest at pH 7.5. In hybC H2 yield was increased ~1.62 fold than in wt. These data might be applied for biomass and biohydrogen production from various organic wastes where mixtures of carbon sources are present.  相似文献   

9.
Escherichia coli produces molecular hydrogen (H2) during glucose or mixed carbon (glucose and glycerol) fermentation. Dependence of H2 production rate (VH2)(VH2) on glucose at different pHs was studied in a concentration dependent manner. During growth of wild-type on glucose, increasing glucose concentration from 0.05% to 0.2% resulted in the marked inhibition of VH2VH2. Inhibitory effect of glucose was shown at pH 7.5 and 6.5 but not pH 5.5. However, glycerol added in the growth medium with 0.1% glucose significantly increased VH2VH2 but different effects at different pHs were established upon glucose or glycerol assays. The results indicate that H2 production is inhibited by glucose in a concentration dependent manner during glucose fermentation but glucose in combination with glycerol might enhance H2 production during mixed carbon fermentation.  相似文献   

10.
Escherichia coli perform mixed acid fermentation and produce hydrogen gas (H2) as one of the fermentation end products. E. coli can ferment sugars like glucose, xylose and alcohols like glycerol. It has been shown that E. coli has the ability to utilize pretreated organic waste (BSG or DG) or mixtures of it with glycerol and H2 can be produced. H2 evolution was maximum when the concentration of BSG was 4% and DG - 10% yielding 1.4 mmol L−1 H2. H2 evolution was prolonged to ~24–120 h when mixtures of glycerol and DG or BSG wastes were applied. Moreover, in hycE (lacking large subunit of Hyd-3) or hyfG (lacking large subunit of Hyd-4) single mutants H2 production was absent compared to wild type suggesting that Hyd-3 and Hyd-4 are responsible for H2 generation. In addition, multiple mutant enhanced cumulative H2 production ~3–4 fold. Taken together it can be proposed that BSG or DG wastes either together or in mixture with glycerol can be applied to obtain E. coli biomass and produce bio-H2. The novel data can be used to further control effectively the application of organic waste resources as a feedstock for developing bio-H2 production technology.  相似文献   

11.
The Escherichia coli BW25113 or MC4100 wild type parental strains growth and H2 production kinetics was studied in batch cultures of minimal salt medium (MSM) and peptone medium (PM) at pH of 5.5–7.5 upon glycerol (10 g L?1) fermentation and formate (0.68 g L?1) supplementation. The role of formate alone or with glycerol on growth and H2 production via hydrogenases (Hyd) was investigated in double hyaB hybC (lacking large subunits of Hyd 1 and 2), triple hyaB hybC hycE (lacking large subunits of Hyds 1-3) and sole selC (lacking formate dehydrogenase H) mutants during 24 h bacterial growth. H2 production was delayed and observed after 24 h bacterial wild type strains growth on MSM. Moreover, it reached the maximal values after 72 h growth at the pH 6.5 and pH 7.5. Biomass formation of the mutants used was inhibited ~3.5 fold compared with wild type, and H2 production was absent in hyaB hybC hycE and selC mutants upon glycerol utilization on MSM at pHs of 5.5–7.5. Formate inhibited bacterial growth on MSM with glycerol, but enhanced and recovered H2 production by hybC mutant at pH 7.5. H2 evolution was delayed at pH 7.5 in PM, but observed and stimulated at pH 6.5 upon glycerol and formate utilization in hyaB hybC mutant. H2 production was absent in hyaB hybC hycE and selC mutants upon glycerol, formate alone or with glycerol fermentation at pH 6.5 and pH 7.5; formate supplementation had no effect. The results point out E. coli ability to grow and utilize glycerol in MSM with comparably high H2 yield: as well as they suggest the key role of Hyd-3 at both pH 6.5 and pH 7.5 and the role of Hyd-2 and Hyd-4 at pH 7.5 in H2 production by E. coli during glycerol fermentation with formate supplementation. The results obtained are novel and might be useful in H2 production biotechnology development using different nutrient media and glycerol and formate as feedstock.  相似文献   

12.
The impact of the four membrane-bound [NiFe]-hydrogenases (Hyd) of Escherichia coli on total H2-oxidizing activity during fermentation of a mixture of glucose, glycerol and formate at different pHs was examined. It was shown that Hyd-2 had a major contribution to total Hyd activity at pH 7.5 in early-stationary phase (24 h) cells, while the main contribution was made by Hyd-3 in late-stationary phase (72 h). Hyd-4-dependent Hyd activity could be demonstrated at pH 6.5 in cells lacking Hyd-1, Hyd-2 and Hyd-3. at pH 7.5 Hyd-4-dependent formate dehydrogenase (FDH-H) activity was demonstrated. Growth properties and fermentation end product patterns during 72 h demonstrated that the cells retained viability deep into stationary phase. Our findings emphasize the importance of formate in modulating H2 metabolism, presumably by contributing to maintain redox, pH and pmf balance. This is important for regulating and enhancing H2 production when a mixture of carbon sources is applied.  相似文献   

13.
Hydrogen (H2) metabolism in Escherichia coli occurs via reversible membrane-associated hydrogenase enzymes (Hyd). Hyd-3 and Hyd-4 with formate dehydrogenase H (FDH-H) form formate hydrogen lyase complexes. The changes of metabolic pathways and ΔpH (pHin-pHex) regulation during fermentation of glucose, glycerol and formate in non H2-producing hypF (lack of all Hyds) and fdhF (lack of FDH-H) mutants at pH 7.5 were investigated. It was shown that specific growth rate was higher by ~23% in hypF and fdhF, compared to wild type (wt), suggesting the negative effect of H2 on bacterial growth. Moreover, it was shown that H2 generation did not have a vital role in glucose and glycerol utilization rate at 0–72 h. The utilization of external formate was detected in wt (~2.6 mM) and hypF (~0.68 mM), but not in fdhF, due to the absence of enzyme responsible for formate metabolism. Nevertheless, the changes in ΔpH were not evident at 3 h. The ratio of generated end-products and regulation of ΔpH at late log (6 h) and exponential phase (24, 72 h) were various in hypF and fdhF due to formate disproportionation in hypF and proton generation, therewith absence of H2 generation. Taken together it can be concluded that bacteria regulate generation of fermentation end-products via balancing the concentration of acids and ethanol to maintain ΔpH and redox potential values. The results obtained are important for development and regulation of H2 production technology when applying mixed carbon sources.  相似文献   

14.
In this study, hydrogen gas was produced from starch feedstock via combination of enzymatic hydrolysis of starch and dark hydrogen fermentation. Starch hydrolysis was conducted using batch culture of Caldimonas taiwanensis On1 able to hydrolyze starch completely under the optimal condition of 55 °C and pH 7.5, giving a yield of 0.46–0.53 g reducing sugar/g starch. Five H2-producing pure strains and a mixed culture were used for hydrogen production from raw and hydrolyzed starch. All the cultures could produce H2 from hydrolyzed starch, whereas only two pure strains (i.e., Clostridium butyricum CGS2 and CGS5) and the mixed culture were able to ferment raw starch. Nevertheless, all the cultures displayed higher hydrogen production efficiencies while using the starch hydrolysate, leading to a maximum specific H2 production rate of 116 and 118 ml/g VSS/h, for Cl. butyricumCGS2 and Cl. pasteurianum CH5, respectively. Meanwhile, the H2 yield obtained from strain CGS2 and strain CH5 was 1.23 and 1.28 mol H2/mol glucose, respectively. The best starch-fermenting strain Cl. butyricum CGS2 was further used for continuous H2 production using hydrolyzed starch as the carbon source under different hydraulic retention time (HRT). When the HRT was gradually shortened from 12 to 2 h, the specific H2 production rate increased from 250 to 534 ml/g  VSS/h, whereas the H2 yield decreased from 2.03 to 1.50  mol H2/mol glucose. While operating at 2 h HRT, the volumetric H2 production rate reached a high level of 1.5 l/h/l.  相似文献   

15.
A hydrogen producing facultative anaerobic alkaline tolerant novel bacterial strain was isolated from crude oil contaminated soil and identified as Enterobacter cloacae DT-1 based on 16S rRNA gene sequence analysis. DT-1 strain could utilize various carbon sources; glycerol, CMCellulose, glucose and xylose, which demonstrates that DT-1 has potential for hydrogen generation from renewable wastes. Batch fermentative studies were carried out for optimization of pH and Fe2+ concentration. DT-1 could generate hydrogen at wide range of pH (5–10) at 37 °C. Optimum pH was; 8, at which maximum hydrogen was obtained from glucose (32 mmol/L), when used as substrate in BSH medium containing 5 mg/L Fe2+ ion. Decrease in hydrogen partial pressure by lowering the total pressure in the fermenter head space, enhanced the hydrogen production performance of DT-1 from 32 mmol H2/L to 42 mmol H2/L from glucose and from 19 mmol H2/L to 33 mmol H2/L from xylose. Hydrogen yield efficiency (HY) of DT-1 from glucose and xylose was 1.4 mol H2/mol glucose and 2.2 mol H2/mol xylose, respectively. Scale up of batch fermentative hydrogen production in proto scale (20 L working volume) at regulated pH, enhanced the HY efficiency of DT-1 from 2.2 to 2.8 mol H2/mol xylose (1.27 fold increase in HY from laboratory scale). 84% of maximum theoretical possible HY efficiency from xylose was achieved by DT-1. Acetate and ethanol were the major metabolites generated during hydrogen production.  相似文献   

16.
The effect of coculture of Clostridium butyricum and Escherichia coli on hydrogen production was investigated. C. butyricum and E. coli were grown separately and together as batch cultures. Gas production, growth, volatile fatty acid production and glucose degradation were monitored. Whilst C. butyricum alone produced 2.09 mol-H2/mol-glucose the coculture produced 1.65 mol-H2/mol-glucose. However, the coculture utilized glucose more efficiently in the batch culture, i.e., it was able to produce more H2 (5.85 mmol H2) in the same cultivation setting than C. butyricum (4.62 mmol H2), before the growth limiting pH was reached.  相似文献   

17.
In order to understand some limiting factors in microbial hydrogen fermentation we have examined hydrogen production by different strains of Escherichia coli grown in batch cultures under different limiting nutrient regimes. The effect of mutations in uptake hydrogenases, in lactate dehydrogenase (ldhA), and fhlA, coding for the regulator of formate hydrogen lyase (fhl) component synthesis, were studied. Each mutation contributed to a modest increase in hydrogen evolution and the effects were synergistic. Various elements were used as limiting nutrient. In batch experiments, limitation for sulfate was without great effect. There was some affect of limiting phosphate with yields approaching 1 mol per mol of glucose. However, strains showed the highest yield of hydrogen per glucose (∼22) when cultured at limiting concentrations of either ammonia or glucose.  相似文献   

18.
Various metal ions play a key role in biohydrogen (H2) production by phototrophic bacteria through incorporation into or stimulating the responsible enzymes and/or related pathways. The Ni (II) and Mg (II) ions effects on growth and H2 production by Rhodobacter sphaeroides strain MDC6521 isolated from mineral springs in Armenia were established. The highest growth specific rate was obtained with 4–6 μM Ni2+ and 5 mM Mg2+. pH of the growth medium changed from 7.0 to 9.2–9.4 during the bacterial growth up to 72 h in spite of Ni2+ added but pH increased in different manner with Mg2+. In the presence of 2–4 μM Ni2+ external oxidation-reduction potential (ORP) decreased to more negative values (−800 ± 15 mV). This decrease of ORP indicated ∼2.7-fold enhanced H2 yield (9.80 mmol L−1) with Ni2+ compared with the control (without Ni2+). The H2 yield determined in the medium with Mg2+ was ∼2.2 fold higher than that with 1 mM Mg2+. These results reveal new regulatory ways to improve H2 production by R. sphaeroides those were depending on Ni2+ and Mg2+ of different concentrations.  相似文献   

19.
Photoproduction of H2 gas has been examined in sulfur/phosphorus-deprived Chalmydomonas reinhardtii cultures, placed in photobioreactors (PhBRs) with different gas phase to liquid phase ratios (Vg.p./Vl.p.). The results demonstrate that an increase in the ratio stimulates H2 photoproduction activity in both algal suspension cultures and in algae entrapped in thin alginate films. In suspension cultures, a 4× increase (from ∼0.5 to ∼2) in Vg.p./Vl.p results in a 2× increase (from 10.8 to 23.1 mmol l−1 or 264–565 ml l−1) in the total yield of H2 gas. Remarkably, 565 ml of H2 gas per liter of the suspension culture is the highest yield ever reported for a wild-type strain in a time period of less than 190 h. In immobilized algae, where diffusion of H2 from the medium to the PhBR gas phase is not affected by mixing, the maximum rate and yield of H2 photoproduction occur in PhBRs with Vg.p./Vl.p above 7 or in a PhBR with smaller headspace, if the H2 is effectively removed from the medium by continuous flushing of the headspace with argon. These experiments in combination with studies of the direct inhibitory effect of high H2 concentrations in the PhBR headspace on H2 photoproduction activity in algal cultures clearly show that H2 photoproduction in algae depends significantly on the partial pressure of H2 (not O2 as previously thought) in the PhBR gas phase.  相似文献   

20.
Glycerol was used as a substrate for H2 production by bacterium Enterobacter aerogenes in the test tubes and bioreactor. A BioFlo/CelliGen 115 bioreactor (10 L working volume) was utilized to conduct the experiments for conversion of glycerol into H2 by E. aerogenes cells. The highest H2 production rate was observed under 2% glycerol in the culture medium. The glycerol uptake efficiency by bacteria in the bioreactor was found to be 65% during the 6 day period, matching glycerol uptake efficiency observed in the test tubes experiment (65%).Hydrogen production from glycerol (2% glycerol, v/v) by E. aerogenes in the bioreactor and test tubes was measured over the 6 days, showing the maximal H2 rate at 650 mL g−1 dry weight h−1. The yield of H2 production from glycerol at 0.89 mol/mol in the bioreactor was high, corresponding to the theoretical yield of 1 mol of H2 per 1 mol of glycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号