首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study deals with the development of poly ether ether ketone (PEEK) based proton exchange membrane (PEM) having phosphonic acid as protogenic moiety. The synthesis of phosphonated PEEK was carried out in two simpler steps i.e. chloromethylation followed by phosphonation through Michaelis-Arbuzov reaction. The product was further investigated for structural property through FTIR, 1H NMR, 13C NMR, 31P NMR and XRD while thermal properties were analysed by TGA. Other physical properties such as ion exchange capacity, water uptake and proton conductivity were determined for the prepared membranes to execute their suitability as PEM. The presence of phosphonic acid group provides good thermal and chemical stability to the membranes. The high substitution degree (1.11–1.56) achieved in present case was favourable for providing significant proton conductivity of 0.047 S/cm at 120 °C under hydrated conditions to the corresponding membranes which entitle them as potential candidate for PEMs in fuel cells at high temperature.  相似文献   

2.
A new type of poly(ether sulfone)‐based self‐aggregated anion exchange membrane (AEM) was successfully synthesized and used in H2/O2 fuel cell applications. The self‐aggregated structural design improves the effective mobility of OH? ion and increases the ionic conductivity of AEM. Proton nuclear magnetic resonance and Fourier transform infrared spectroscopy spectra confirm successful chloromethylation and quaternization in the poly(ether sulfone). Thermogravimetric analysis curves show the self‐aggregated membrane was thermally stable up to 180 °C. The AEM also has excellent mechanical properties, with tensile strength 53.5 MPa and elongation at break 47.6% under wet condition at room temperature. The performance of H2/O2 single fuel cell at 30 °C showed the maximum power density of 162 mW cm?2. These results show that the self‐aggregated quaternized poly(ether sulfone) membrane is a potential candidate for alkaline fuel cell applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Custom-made proton exchange membranes (PEM) are synthesized by incorporating sulfonated poly(ether ether ketone) (SPEEK) in poly(ether sulfone) (PES) for electricity generation in microbial fuel cells (MFCs). The composite PES/SPEEK membranes at various composition of SPEEK are prepared by the phase inversion method. The membranes are characterized by measuring roughness, proton conductivity, oxygen diffusion, water crossover and electrochemical impedance. The conductivity of hydrophobic PES membrane increases when a small amount (3–5%) of hydrophilic SPEEK is added. The electrochemical impedance spectra shows that the conductivity and capacitance of PES/SPEEK composite membranes during MFC operation are reduced from 6.15 × 10−7 to 6.93 × 10−5 (3197 Ω–162 Ω) and from 3.00 × 10−7 to 1.56 × 10−3 F, respectively when 5% of SPEEK added into PES membrane. The PES/SPEEK 5% membrane has the highest performance compared to other membranes with a maximum power density of 170 mW m−2 at the maximum current density of 340 mA m−2. However, the interfacial reaction between the membrane and the cathode with Pt catalyst indicates moderate reaction efficiency compared to other membranes. The COD removal efficiency of MFCs with composite membrane PES/SPEEK 5% is nearly 26-fold and 2-fold higher than that of MFCs with Nafion 112 and Nafion 117 membranes respectively. The results suggest that the PES/SPEEK composite membrane is a promising alternative to the costly perfluorosulfonate membranes presently used as separators in MFC systems.  相似文献   

4.
The poly(tetraphenyl ether ketone sulfone)s (PTPEKSs) were synthesized from 1,2-bis(4-fluorobenzoyl)-3,4,5,6-tetraphenyl benzene (BFBTPB) and bis(4-fluorophenyl) sulfone with bis(4-hydroxydiphenyl) sulfone in sulfolane. The synthesis of poly(tetraphenyl phthalazine ether sulfone)s (PTPPESs) was carried out via an intramolecular ring-closure reaction of dibenzoylbenzene moiety with hydrazine monohydrate. The PTPPES-QAHs [poly(tetraphenyl phthalazine ether sulfone-quaternary ammonium hydroxide)]s were synthesized via chloromethylation of PTPPES, quaternization with trimethylamine, and followed by an anion exchange of tetra-quaternary ammonium chloride polymers with KOH. Different contents of quaternized unit in PTPPES-QAH (15, 20, 25 mol% of BFBTPB) were studied by FT-IR, 1H NMR spectroscopy, and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of quaternized polymers with water. The ion exchange capacity (IEC), ion conductivity and cell performance of PTPPES-QAH were evaluated with increasing the degree of quaternization.  相似文献   

5.
Electrochemical methanol reformation (ECMR) is an alternative promising technology for producing hydrogen at low energy consumption compared to water electrolysis. In this process, solid polymer electrolyte Nafion® is widely employed, due to its superior proton conductivity. However, major limitations are the utilisation of expensive platinum based catalysts, high cost of the above membrane and the crossover of methanol through the polymer electrolyte membrane. In the present work, attempt has been to made to use low cost polymer electrolyte membrane and less noble electro catalyst. A series of Anion Exchange Membranes (AEM) are synthesized from Poly (2, 6-dimethyl-1, 4-phenylene oxide) (PPO) for its application in ECMR. PPO is successfully made into anion conducting by chloromethylation followed by quaternization. Two AEM's are synthesized by optimizing chloromethylation reaction time to 5 h and quaternization time to 5 and 8 h and are labelled as QPPO (C5, Q5) and QPPO (C5, Q8) respectively. Further, with the view to improve the anion conductivity further, composite AEMs are prepared by incorporating inorganic anion conducting quaternized graphene oxide particles in the matrix of PPO and QPPO (C5, Q8) polymers separately to obtain two polymers PPO/QGO and QPPO/QGO. The anionic conductivity of PPO/QGO and QPPO/QGO polymer is 1.2 × 10−4 and 1.5 × 10−4 S cm−1 respectively. Both the membranes are subjected as electrolyte for ECMR application using membrane electrode assembly made by with in house synthesized nitrogen doped graphene supported Pd catalyst (Pd/NG) as anode catalyst and commercial Pt/C as cathode catalyst. The performance of composite membrane was compared with the commercial Fumasep® FAA anion exchange membrane. The polarization studies of ECMR cell with composite membrane shows comparable performance with that of commercial Fumasep® FAA-2 FAA membrane. The durability of the membrane(s) in the electrolysis environment was tested for about 20 h.  相似文献   

6.
Poly(ether ether ketone) (PEEK) and sulfonated poly(ether ether ketone) (SPEEK, IEC = 2.07 mequiv.g−1) have been synthesized via nucleophilic aromatic substitution reaction. Bromomethylated poly(ether ether ketone) (PEEK-Br) is then prepared and reacted with 2-benzimidazolethiol to obtain the benzimidazole grafted poly(ether ether ketone) (PEEK-BI). The structures of PEEK-Br and PEEK-BI are characterized by 1H NMR spectra. Composite membranes based on SPEEK and PEEK-BI are prepared and their properties used for fuel cells are studied in detail. The results show that the composite membranes exhibit greatly improved mechanical properties as well as reduced water uptake and methanol permeability compared with the pristine SPEEK membrane. The increased oxidative stability and selectivity indicate that the composite membranes are promising to be used as proton exchange membranes.  相似文献   

7.
Imidazolium-functionalized anion exchange membranes (AEMs) for anion exchange membrane fuel cells (AEMFCs) were synthesized by functionalization of chloromethylated poly (ether sulfone) (PES) with 1-alkylimidazole. The properties of AEMs can be controlled by the degree of chloromethylation of PES. Moreover, with the increment of the alkyl line length on the imidazolium group, the water uptake, swelling ratio and solubility of AEMs increased, whereas the hydroxide conductivity declined. By dissolving AEMs in the mixture of ethanol and water, IM-based anion exchange ionomers (AEIs) can be obtained. Electrochemical studies revealed that the catalytic activities of Pt/C towards oxygen reduction and hydrogen oxidation in the presence of imidazolium-functionalized AEIs were almost the same with that of commercial quaternary ammonium-based ionomers. The fabricated AEM and AEI were utilized to assemble H2/O2 AEMFC, yielding a peak power density of ∼30 mW cm−2 with open circuit potential larger than 1.0 V. The results obtained indicate that imidazolium-functionalized AEMs and AEIs may be candidates which are worth further investigation for the application in the AEMFCs.  相似文献   

8.
We designed and synthesized a poly(ether imide) (PEI) membrane that has good chemical and mechanical stabilities. Alkalized PEI (A-PEI) membrane was fabricated by solution casting of chloromethylated PEI (CM-PEI) followed by quaternization and alkalization. The chemical structure of the synthesized polymers was verified by proton nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectroscopy (FT-IR). Physiochemical properties of the membrane such as ion exchange capacity, water uptake, and swelling ratio were investigated. The membranes with a high degree of chloromethylation (DC) exhibited elevated hydroxide ion conductivity in range of 6.7–44.2 mS/cm at 90 °C under 100% relative humidity (RH). The hydrophilic-hydrophobic phase separation was verified by atomic force microscope (AFM) and small angle X-ray scattering (SAXS) measurements. Chemical stability was evaluated by measuring the durability of membranes while they were soaked in oxidative and alkaline solutions at 60 °C for 200 h.  相似文献   

9.
It was reported that the existence of N-spirocyclic quaternary ammonium (QA) cation could improve alkaline stability of anion exchange membrane materials (AEM). Therefore, the cyclo-quaternization reaction with pyrrolidine (Pyr) and piperidine (Pip) was carried out to prepare quaternized poly (ether ether ketone)s bearing five-membered and six-membered N-spirocyclic quaternary ammonium (QA) groups in the phenyl side chains (QPEEK-spiro-pyr and QPEEK-spiro-pip), respectively. From the transmission electron microscope, the hydrophilic-hydrophobic phase-separated morphology was formed in QPEEK-spiro membranes after incorporating N-spirocyclic QA cations and bulky spacer simultaneously in the phenyl side chain. The effect of N-spirocyclic QA groups on performance of resulted AEMs was then studied in detail. The anion conductivities of QPEEK-spiro-pyr and QPEEK-spiro-pip in OH? form at 80 °C were 49.6 and 30.9 S cm?1, respectively. The remaining proportions of hydroxide conductivity for QPEEK-spiro-pyr and QPEEK-spiro-pip membranes after immersing in 1 M NaOH at 60 °C were 81.0% and 74.7%, respectively, which were higher than that of 62.3% for QPEEK-TMA containing conventional QA groups in the phenyl side chain. Fuel cell assembled with QPEEK-spiro-pyr achieves a peak power density of 90 mW cm?2. These results indicate the strategy of simultaneously introducing N-spirocyclic QA cations and bulky spacers can improve the performance of AEM to a certain extent. There are some other factors that influence the alkaline stability of the prepared AEMs, such as the existence of ether bonds in the main chain. However, this work still provides a valuable reference towards the molecular design of AEMs with improved performance.  相似文献   

10.
The poly(ether ether ketone) (PEEK) was prepared as organic matrix. ZIF-8 and GO/ZIF-8 were used as fillers. A series of novel new anion exchange membranes (AEMs) were fabricated with imidazole functionalized PEEK and GO/ZIF-8. The structure of ZIF-8, GO/ZIF-8 and polymers are verified by 1H NMR, FT-IR and SEM. This series of hybrid membranes showed good thermal stability, mechanical properties and alkaline stability. The ionic conductivities of hybrid membranes are in the range of 39.38 mS cm?1–43.64 mS cm?1 at 30 °C, 100% RH and 59.21 mS cm?1–86.87 mS cm?1 at 80 °C, 100% RH, respectively. Im-PEEK/GO/ZIF-8-1% which means the mass percent of GO/ZIF-8 compound in Im-PEEK polymers is 1%, showed the higher ionic conductivity of 86.87 mS cm?1 at 80 °C and tensile strength (38.21 MPa) than that of pure membrane (59.21 mS cm?1 at 80 °C and 19.47 MPa). After alkaline treatment (in 2 M NaOH solution at 60 °C for 400 h), the ionic conductivity of Im-PEEK/GO/ZIF-8-1% could also maintain 92.01% of the original ionic conductivity. The results show that hybrid membranes possess the ability to coordinate trade-off effect between ionic conductivity and alkaline stability of anion exchange membranes. The excellent performances make this series of hybrid membranes become good candidate for application as AEMs in fuel cells.  相似文献   

11.
High-performance anion exchange membranes (AEMs) are in need for practical application of AEM fuel cells. Novel branched poly(ether ether ketone) (BPEEK) based AEMs were prepared by the copolymerization of phloroglucinol, methylhydroquinone and 4,4′-difluorobenzophenone and following functionalization. The effects of the branched polymer structures and functional groups on the membrane's properties were investigated. The swelling ratios of all the membranes were kept below 15% at room temperature and had good dimensional stability at elevated temperatures. The branching degree has almost no effect on the dimensional change, but plays a great role in tuning the nanophase separation structure. The cyclic ammonium functionalized membrane showed a lower conductivity but a much better stability than imidazolium one. The BPEEK-3-Pip-53 membrane with the branching degree of 3% and piperidine functionalization degree of 53% showed the best performances. The ionic conductivity was 43 mS cm−1 at 60 °C. The ionic conductivity in 1 M KOH at 60 °C after 336 h was 75% of its initial value (25% loss of conductivity), and the IEC was 83% of its initial value (17% loss of IEC), suggesting good alkaline stability. The peak energy density (60 °C) of the single H2/O2 fuel cell with BPEEK-3-Pip-53 membrane reached 133 mW cm−2 at 260 mA cm−2.  相似文献   

12.
Previous studies have shown that Microbial Electrolysis Cells (MECs) perform better when an anion exchange membrane (AEM) than when a cation exchange membrane (CEM) separates the electrode chambers. Here, we have further studied this phenomenon by comparing two analysis methods for bio-electrochemical systems, based on potential losses and partial system resistances. Our study reconfirmed the large difference in performance between the AEM configuration (2.1 m3 H2 m?3 d?1) and CEM configuration (0.4 m3 H2 m?3 d?1) at 1 V. This better performance was caused mainly by the much lower internal resistance of the AEM configuration (192 mΩ m2) compared to the CEM configuration (435 mΩ m2). This lower internal resistance could be attributed to the lower transport resistance of ions through the AEM compared to the CEM caused by the properties of both membranes. By analyzing the changes in resistances the limitations in an MEC can be identified which can lead to improved cell design and higher hydrogen production rates.  相似文献   

13.
Alkaline fuel cells suggest solution for the problems of low methanol oxidation kinetics and methanol crossover, which are limiting the development of direct methanol fuel cells. In this work, a novel anion exchange membrane, quaternized poly(aryl ether oxadiazole), was prepared through polycondensation, grafting and quaternization. The ionic conductivity of as-synthesized anion exchange membrane can reach up to 2.79 × 10−2 S/cm at 70 °C. The physical and chemical stability of the anion exchange membranes could also meet the requirement for alkaline direct methanol fuel cells.  相似文献   

14.
Anion exchange membrane from poly(phenylene oxide) containing pendant quaternary ammonium groups is fabricated for application in alkaline polymer electrolyte fuel cells (APEFCs). Chloromethylation of poly(phenylene oxide) (PPO) was performed by aryl substitution and then homogeneously quaternized to form an anion exchange membrane (AEM). The influence of various parameters on the chloromethylation reaction was investigated and optimized. The successful introduction of the above groups in the polymer backbone was confirmed by 1H NMR and FT-IR spectroscopy. Membrane intrinsic properties such as ion exchange capacity, water uptake and ionic conductivity were evaluated. The membrane electrolyte exhibited an enhanced performance in comparison with the state-of-the-art commercial AHA membrane in APEFCs. A peak power density of 111 mW/cm2 at a load current density of 250 mA/cm2 was obtained for PPO based membrane in APEFCs at 30 °C.  相似文献   

15.
A type of sulfonated covalent organic framework nanosheets (TpPa-SO3H) was synthesized via interfacial polymerization and incorporated into sulfonated poly (ether ether ketone) (SPEEK) matrix to prepare proton exchange membranes (PEMs). The densely and orderly arranged sulfonic acid groups in the rigid skeleton of the TpPa-SO3H nanosheets, together with their high-aspect-ratio and well-defined porous structure provide proton-conducting highways in the membrane. The doping of TpPa-SO3H nanosheets led to an increased ion exchange capacity up to 2.34 mmol g?1 but a 2-folds reduced swelling ratio, remarkably mitigating the trade-off between high IEC and excessive swelling ratio. Based on the high IEC and orderly arranged proton-conducting sites, the SPEEK/TpPa–SO3H–5 membrane exhibited the maximum proton conductivity of 0.346 S cm?1 at 80 °C, 1.91-folds higher than the pristine SPEEK membrane. The mechanical strength of the composite membrane was also improved by 2.05-folds–74.5 MPa. The single H2/O2 fuel cell using the SPEEK/TpPa–SO3H–5 membrane presented favorable performance with an open voltage of 1.01 V and a power density of 86.54 mW cm?2.  相似文献   

16.
This study demonstrates the successful development of hybrid mesoporous siliceous phosphotungstic acid (mPTA-Si) and sulfonated poly ether ether ketone (SPEEK) as a proton exchange membrane with a high performance in hydrogen proton exchange membrane fuel cells (PEMFC). SPEEK acts as a polymeric membrane matrix and mPTA-Si acts as the mechanical reinforcer and proton conducting enhancer. Interestingly, incorporating mPTA-Si did not affect the morphological aspect of SPEEK as dense membrane upon loading the amount of mPTA-Si up to 2.5 wt%. The water uptake reduced to 14% from 21.5% when mPTA-Si content increases from 0.5 to 2.5 wt% respectively. Meanwhile, the proton conductivity increased to 0.01 Scm?1 with 1.0 wt% mPTA-Si and maximum power density of 180.87 mWcm?2 which is 200% improvement as compared to pristine SPEEK membrane. The systematic study of hybrid SP-mPTA-Si membrane proved a substantial enhancement in the performance together with further improvement on physicochemical properties of parent SPEEK membrane desirable for the PEMFC application.  相似文献   

17.
A novel poly(ether ether ketone) (PEEK) containing pendant carboxyl groups has been synthesized by a nucleophilic polycondensation reaction. Sulfonated polymers (SPEEKs) with different ion exchange capacity are then obtained by post-sulfonation process. The structures of PEEK and SPEEKs are characterized by both FT-IR and 1H NMR. The properties of SPEEKs as candidates for proton exchange membranes are studied. The cross-linking reaction is performed at 140 °C using poly(vinyl alcohol) (PVA) as the cross-linker. In comparison with the non-cross-linked membranes, some properties of the cross-linked membranes are significantly improved, such as water uptake, methanol resistance, mechanical and oxidative stabilities, while the proton conductivity decreases. The effect of PVA content on proton conductivity, water uptake, swelling ratio, and methanol permeability is also investigated. Among all the membranes, SPEEK-C-8 shows the highest selectivity of 50.5 × 104 S s cm−3, which indicates that it is a suitable candidate for applications in direct methanol fuel cells.  相似文献   

18.
A novel proton exchange membrane composed of the sulfonated poly(ether ether ketone ketone) (SPEEKK) with butane-1,4-diylbis(oxy) spacers in the backbone and sulfopropyloxy pendants is synthesized through the Friedel-Crafts polyacylation of 1,4-diphenoxybutane (DPB), diethyl-3,3’-([1,1′-biphenyl]-2,2′-diylbis(oxy))bis(propane-1-sulfonate) (SBP–OEt), and terephthaloyl chloride (TPC) under mild conditions. The monomer DPB can introduce the flexible aliphatic butane-1,4-diylbis(oxy) spacers into the polymeric backbone and thus promote the formation of proton transport channels. The as-synthesized SPEEKK exhibits a high proton conductivity of 152.5 mS cm?1 at 95 °C and 90% relative humidity (RH), a moderate water uptake of 53.2% at 100 °C and also a high ion exchange capacity of 1.74 mmol g?1. These characteristics are attributed to the enhanced nanophase separation induced by the flexible butane-1,4-diylbis(oxy) spacers and hydrophilic sulfopropyloxy sidechains.  相似文献   

19.
In this article, novel branched sulfonated poly(ether ether ketone)s (Br-SPEEK) containing various amounts of 1,3,5-tris(4-fluorobenzoyl)benzene as the branching agent have been successfully prepared. Compared with the traditional linear polymer membranes, the membranes prepared by Br-SPEEK showed improved mechanical strength, excellent dimensional stability and superior oxidative stability with similar proton conductivity. Notably, the Br-SPEEK-10 membrane began to break after 267 min in Fenton's reagent at 80 °C, which was 4 times longer than that of the L-SPEEK. Although the proton conductivity decreased with the addition of the branching agent, satisfying methanol permeability value was observed (down to 6.3 × 10−7 cm2 s−1), which was much lower than Nafion 117 (15.5 × 10−7 cm2 s−1). All the results indicated that the novel branched sulfonated poly(ether ether ketone)s membrane was potential candidate as proton conductive membranes for application in fuel cells.  相似文献   

20.
《Journal of power sources》2006,155(2):111-117
Sulfonated poly(phthalazinone ether ketone) (sPPEK) with a degree of sulfonation of 1.23 was mixed with silica nanoparticles to form hybrid materials for using as proton exchange membranes. The nanoparticles were found homogeneously dispersed in the polymer matrix and a high 30 phr (parts per hundred resin) loading of silica nanoparticles can be achieved. The hybrid membranes exhibited improved swelling behavior, thermal stability, and mechanical properties. The methanol crossover behavior of the membrane was also depressed such that these membranes are suitable for a high methanol concentration in feed (3 M) in cell test. The membrane with 5 phr silica nanoparticles showed an open cell potential of 0.6 V and an optimum power density of 52.9 mW cm−2 at a current density of 264.6 mA cm−2, which is better than the performance of the pristine sPPEK membrane and Nafion® 117.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号