首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we report the solution combustion synthesis of cobalt oxide nanofoam from solutions of cobalt nitrate and glycine and subsequent use as an effective catalyst precursor for NaBH4 hydrolysis. The catalytic activity results show that the hydrogen generation rate (HGR) at room temperature was much higher for the solution combustion synthesized material than for commercial Co3O4 nanopowder, though their specific surface areas were comparable (∼26–32 m2/g). Using a 0.6 wt.% aqueous solution of NaBH4 at 20 °C and a 5 wt.% catalyst precursor loading, a HGR of 1.93 L min−1 gcat−1 was achieved for solution combustion synthesized Co3O4. In contrast, at the same conditions, for commercial Co3O4 and elemental Co powders HGRs of 0.98 and 0.49 L min−1 gcat−1 were achieved respectively. This type of synthesis is amenable to many complex metal oxide catalysts as well, such as LiCoO2, which have also been shown to be good catalyst precursors for hydrolysis of NaBH4.  相似文献   

2.
Solution combustion synthesized (SCS) cobalt oxide (Co3O4) powder has been studied as a catalyst precursor for the hydrolysis of sodium borohydride (NaBH4). Synthesis is completed in less than two minutes and results indicate SCS is capable of reproducibly synthesizing 98.5–99.5% pure Co3O4 nano-foam materials. SCS materials demonstrate an as-synthesized specific surface area of 24 m2 g−1, a crystallite size of 15.5 nm, and fine surface structures on the order of 4 nm. Despite having similar initial surface areas and sample purities, SCS-Co3O4 outperforms commercially available Co3O4 and elemental cobalt (Co) nano powders when used as a catalyst precursor for NaBH4 hydrolysis. Hydrogen generation rates (HGR) using 0.6 wt% NaBH4 in aqueous solution at 20 °C were observed to be 1.24 ± 0.2 L min−1 gcat−1 for SCS nano-foam Co3O4 compared to 0.90 ± 0.09 and 0.43 ± 0.04 L min−1 gcat−1 for commercially available Co3O4 and Co, respectively. The high catalytic activity of SCS-Co3O4 is attributed to its nano-foam morphology and crystallinity. During the hydrolysis of NaBH4, the SCS-Co3O4 converts in-situ to an amorphous active catalyst with a specific surface area of 92 m2 g−1 and exhibits a honeycomb type morphology.  相似文献   

3.
A Co/HTNT catalyst is developed by immobilizing Co on the surface of titanate nanotubes. The microstructure and composition of the catalyst are investigated with atomic absorption spectroscopy (AAS), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS). The developed Co/HTNT catalyst shows great performance in catalyzing NaBH4 hydrolysis. The hydrolysis of 25 mg NaBH4 catalyzed by 50 mg Co/HTNT in 10 g NaOH solution (12.5 wt%) provides a hydrogen production rate of 1.04 L min?1 gCo?1 at 30 °C, and the activation energy of the reaction is 29.68 kJ mol?1. The high catalytic activity and economical property make this catalyst a promising choice for on-site hydrogen production from NaBH4 hydrolysis.  相似文献   

4.
Glycerol is the main by-product during the trans-esterification of vegetable oils to biodiesel. In this study, we investigate the process of photocatalytic hydrogen production from glycerol aqueous solution, with the use of cobalt doped TiO2 photocatalyst under solar light irradiation. Cobalt doped TiO2 photocatalysts are prepared by impregnation method and these catalysts are characterized by XRD, EDAX, DRS, TEM, EPR and XPS techniques. DRS studies clearly show the expanded photo response of TiO2 into visible region on impregnation of Co2+ ions on surface of TiO2. XPS studies also show change in the binding energy values of O1s, Ti 2p and Co 2p, indicating that Co2+ ions are in interaction with TiO2. Maximum hydrogen production of 220 μ mol h−1 g−1 is observed on 2 wt% cobalt doped TiO2 catalysts in pure water under solar irradiation. A significant improvement in hydrogen production is observed in glycerol: water mixtures; and maximum hydrogen production of 11,021 μ mol h−1 g−1 is obtained over 1 wt% cobalt doped TiO2 in 5% glycerol aqueous solutions. Furthermore, to evaluate some reaction parameters such as cobalt wt% on TiO2, glycerol concentration, substrate effect (alcohols) and pH of the solution on the hydrogen production activity are systematically investigated. When the catalysts are examined under UV irradiation, a 3–4 fold increase in activity is observed where this activity seems to decrease with time; however, a continuous activity is observed under solar irradiation on these catalysts. The decreased activity could be ascribed the loss of cobalt ions under UV irradiation, as evidenced by EDAX and TEM analysis. A possible explanation for the stable and continuous activity of cobalt doped TiO2 photocatalysts under solar irradiation is proposed.  相似文献   

5.
This paper reports the in-situ generation and catalytic activity of nickel(0) and cobalt(0) nanoclusters stabilized by poly(4-styrene sulfonic acid-co-maleic acid), PSSA-co-MA, in the hydrolysis of ammonia borane (AB). PSSA-co-MA stabilized nickel(0) (PSMA-Ni) and cobalt(0) nanoclusters (PSMA-Co) having average particle size of 2.1 ± 0.6 and 5.3 ± 1.6 nm, respectively, were generated by in-situ reduction of nickel(II) chloride or cobalt(II) chloride in an aquoues solution of NaBH4/H3NBH3 in the presence of PSSA-co-MA. The in-situ generated nanoclusters were isolated from the reaction solution and characterized by UV-Vis, TEM, XRD and FT-IR techniques. Compared with the previous catalyst systems, PSMA-Ni and PSMA-Co are found to be highly active catalysts for hydrogen generation from the hydrolysis of AB with the turnover frequency values of 10.1 min−1 for Ni and 25.7 min−1 for Co. They are also very stable during the hydrolysis of AB providing 22450 and 17650 turnovers, respectively. The results of mercury poisoning experiments reveal that PSMA-Ni and PSMA-Co are heterogeneous catalysts in the hydrolysis of AB. Herein, we also report the results of a detailed kinetic study on the hydrogen generation from the hydrolysis of AB catalyzed by PSMA-Ni and PSMA-Co depending on catalyst concentration, substrate concentration, and temperature along with the activation parameters of catalytic hydrolysis of AB calculated from the kinetic data.  相似文献   

6.
Generation of hydrogen by hydrolysis of alkali metal hydrides has attracted attention. Unsupported CoB catalyst demonstrated high activity for the catalytic hydrolysis of NaBH4 solution. However, unsupported CoB nanoparticles were easy to aggregate and difficult to reuse. To overcome these drawbacks, CoB/SiO2 was prepared and tested for this reaction. Cobalt (II) acetate precursor was loaded onto the SiO2 support by incipient-wetness impregnation method. After drying at 100 °C, Co cations were deposited on the support. The dried sample was then dispersed in methanol/water solution and then fully reduced by NaBH4 at room temperature. The catalyst was characterized by N2 sorption, XRD and XPS. The results indicated that the CoB on SiO2 possessed amorphous structure. B and Co existed both in elemental and oxidized states. SiO2 not only affected the surface compositions of CoB, but also affected the electronic states of Co and B. B0 could donate partial electron to Co0. The structure effect caused by the SiO2 support helped to prevent CoB nanocluster from aggregation and therefore the activity increased significantly on hydrolysis of alkaline NaBH4 solution. The CoB/SiO2 catalyst showed much higher activity than the unsupported CoB catalyst. At 298 K, the hydrogen generation rate on CoB/SiO2 catalyst was 4 times more than that on the unsupported CoB catalyst. The hydrogen generation rate was as high as 10,586 mL min−1 g−1 catalyst at 298 K. CoB/SiO2 is a very promising catalyst for this reaction.  相似文献   

7.
Multiwalled carbon nanotubes supported cobalt–boron catalysts (Co–B/MWCNT) were developed via the chemical reduction of aqueous sodium borohydride with cobalt chloride for catalytic hydrolysis of alkaline NaBH4 solution. The hydrogen generation (HG) rates were measured on an improved high-accuracy, low-cost and automatic HG rate measurement system based on the use of an electronic balance with high accuracy. The HG of Co–B/MWCNT catalyst was investigated as a function of heat treatment, solution temperature, Co–B loading and supporting materials. The catalyst was mesoporous structured and showed lower activation energy of 40.40 kJ mol−1 for the hydrolysis of NaBH4. The Co–B/MWCNT catalyst was not only highly active to achieve the average HG rate of 5.1 l min−1 g−1 compared to 3.1 l min−1 g−1 on Co–B/C catalyst under the same conditions but also reasonably stable for the continuous hydrolysis of NaBH4 solution.  相似文献   

8.
Co–Cu–B, as a catalyst toward hydrolysis of sodium borohydride solution, has been prepared through chemical reduction of metal salts, CoCl2·6H2O and CuCl2, by an alkaline solution composed of 7.5wt% NaBH4 and 7.5wt% NaOH. The effects of Co/Cu molar ratio, calcination temperature, NaOH and NaBH4 concentration and reaction temperature on catalytic activity of Co–Cu–B for hydrogen generation from alkaline NaBH4 solution have been studied. X-ray diffraction (XRD), scanning electron microscope (SEM) and Nitrogen adsorption–desorption isotherm have been employed to understand the results. The Co–Cu–B catalyst with a Co/Cu molar ratio of 3:1 and calcinated at 400 °C showed the best catalytic activity at ambient temperature. The activation energy of this catalytic reaction is calculated to be 49.6 kJ mol−1.  相似文献   

9.
The development of efficient and non-noble catalyst is of great significance to hydrogen generation techniques. Three surface-oxidized cobalt borides of Co–B–O@CoxB (x = 0.5, 1 and 2) have been synthesized that can functionalize as active catalysts in both alkaline water electrolysis and the hydrolysis of sodium borohydride (NaBH4) solution. It is discovered that oxidation layer and low boron content favor the oxygen evolution reaction (OER) activity of Co–B–O@CoxB in alkaline water electrolysis. And surface-oxidized cobalt boride with low boron content is more active toward hydrolysis of NaBH4 solution. An alkaline electrolyzer fabricated using the optimized electrodes of Co–B–O@CoB2/Ni as cathode and Co–B–O@Co2B/Ni as anode can deliver current density of 10 mA cm−2 at 1.54 V for overall water splitting with satisfactory stability. Meanwhile, Co–B–O@Co2B affords the highest hydrogen generation rate of 3.85 L min−1 g−1 for hydrolysis of NaBH4 at 25 °C.  相似文献   

10.
We report the preparation of Ni3B and carbon-supported Ni3B (denoted as Ni3B/C) nanoparticles, and their catalytic performance for hydrogen generation from hydrolytic dehydrogenation of ammonia borane (NH3BH3, AB). Ni3B and Ni3B/C were prepared via a chemical reduction and crystallization in tetraethylene glycol solution. The obtained Ni3B catalysts are in well-defined crystalline state and Ni3B/C catalysts have a high dispersion in the carbon. The hydrogen generation measurement shows that the carbon-supported Ni3B presents enhanced catalyst activity during hydrolytic dehydrogenation of AB. Among the as-prepared Ni3B/C catalysts, Ni3B/C with 34.25 wt% Ni3B loading displays the best catalytic activity, delivering a high hydrogen release rate of 1168 mL min−1 g−1 and the lower activation energy of 46.27 kJ mol−1. The kinetic results show that the hydrolysis is a first-order reaction in catalyst concentration, while it is a zero-order in AB concentration. Furthermore, the Ni3B/C is a recyclable catalyst under mild reaction conditions, indicating that the carbon-supported Ni3B is a promising catalyst for AB hydrolytic dehydrogenation.  相似文献   

11.
This work investigates the effect of the addition of small amounts of Ru (0.5‐1 wt%) to carbon supported Co (10 wt%) catalysts towards both NaBH4 and NH3BH3 hydrolysis for H2 production. In the sodium borohydride hydrolysis, the activity of Ru‐Co/carbon catalysts was sensibly higher than the sum of the activities of corresponding monometallic samples, whereas for the ammonia borane hydrolysis, the positive effect of Ru‐Co systems with regard to catalytic activity was less evident. The performances of Ru‐Co bimetallic catalysts correlated with the occurrence of an interaction between Ru and Co species resulting in the formation of smaller ruthenium and cobalt oxide particles with a more homogeneous dispersion on the carbon support. It was proposed that Ru°, formed during the reduction step of the Ru‐Co catalysts, favors the H2 activation, thus enhancing the reduction degree of the cobalt precursor and the number of Co nucleation centers. A subsequent reduction of cobalt and ruthenium species also occurs in the hydride reaction medium, and therefore the state of the catalyst before the catalytic experiment determines the state of the active phase formed in situ. The different relative reactivity of the Ru and Co active species towards the two investigated reactions accounted for the different behavior towards NaBH4 and NH3BH3 hydrolysis.  相似文献   

12.
Hydrogen generation from the hydrolysis of aluminum lithium/sodium borohydride (referred to as AlLi/NaBH4) system activated by Co powder with different particle size and amount was evaluated in this paper. The designed aluminum–lithium–cobalt (referred to as Al–Li–Co/NaBH4) systems including Al-5 wt% Li-50 wt% nano Co, Al-7.5 wt% Li-25 wt% nano Co, Al-5 wt% Li-50 wt% micro Co, and Al-7.5 wt% Li-25 wt% micro Co had 100% hydrogen yield at 323 K. The hydrogen generation rates of these systems were regulated by Co species, Co amount, as well as consecutive runs of NaBH4 hydrolysis. The underlying activation mechanism, including the formation of Al0.94Co1.06 alloy and highly active and stable Co-based catalyst has been elaborated in this study. Experimental data present an inexpensive and highly efficient hydrogen source for portable fuel cell.  相似文献   

13.
Poly(3-sulfopropyl methacrylate) (p(SPM)) cryogel was prepared under cryogenic conditions (T = −18 °C) and used as template for in situ metal nanoparticle preparation of Co, Ni and Cu. These metal nanoparticle-containing super macroporous cryogel composites were tested for H2 production from hydrolysis of sodium borohydride (NaBH4) and ammonia borane (AB). It was found that amongst p(SPM)-M (M: Co, Ni, and Cu) composite catalyst systems, the catalytic performances of Co- and Ni-containing p(SPM) cryogel composite catalyst systems were the same, however in hydrolysis of NH3BH3, the order of performance of the catalysts was Co > Ni > Cu. Interestingly, p(SPM)-Co cryogel composite demonstrated better catalytic performances in salt environments e.g., faster H2 production rate in sea and tap water compared to DI water, and almost no effect of ionic strength of the solution medium was observed, but the salt types were found to affect the H2 generation rate. Other parameters that affect H2 production rate such as metal type, temperature, water source, salt concentration, amount of metal nanocatalyst and reusability were investigated. It was found that the hydrogen generation rate (HGR) was increased to 2836 ± 90 from 1000 ± 53 (ml H2)(g of Co min)−1 by multiple loading and reduction cycles of Co catalyst. Also, it was found that TOF values are highly temperature dependent, and increased to 15.1 ± 0.8 from 2.4 ± 0.1 (mol H2)(mol catalyst min)−1 by increasing the temperature from 30 to 70 °C. The activation energy, activation enthalpy and activation entropy were determined as 40.8 kJ (mol)−1, 37.23 kJ (mol K)−1, and −170.87 J (mol K)−1, respectively, for the hydrolysis reaction of NaBH4 with p(SPM)-Co catalyst system, and 25.03 kJ (mol)−1, 22.41 kJ (mol K)−1, and −182.8 J (mol K)−1, respectively, for AB hydrolysis catalyzed by p(SPM)-Co composite system.  相似文献   

14.
Hydrogen production via chemical processes has gained great attention in recent years. In this study, Co-based complex catalyst obtained by adsorption of Co metal to Amberlite IRC-748 resin and Diaion CR11 were tested for hydrogen production from alkaline NaBH4 via hydrolysis process. Their catalytic activity and microstructure were investigated. Process parameters affecting the catalytic activity, such as NaOH concentration, Co percentage and catalyst amount, as well as NaBH4 concentration and temperature were investigated. Furthermore, characteristics of these catalysts were carried out via SEM, XRD and FT-IR analysis. Hydrogen production rates equal to 211 and 221 ml min−1 gcat−1 could be obtained with Amberlite IRC-748 resin and Diaion CR11 Co based complex catalysts, respectively. The activation energies of the catalytic hydrolysis reaction of NaBH4 were calculated as 46.9 and 59.42 kJ mol−1 for Amberlite IRC-748 resin and Diaion CR11 based catalysts respectively kJ mol−1 from the system consisting of 3% Co, 10 wt% NaBH4 and 7 wt% NaOH as well as 50 mg catalyst dosage. It can be concluded that Co-based resins as catalysts for hydrogen production is an effective alternative to other catalysts having higher rate.  相似文献   

15.
Cobalt(0) nanoclusters embedded in silica (Co@SiO2) were prepared by a facile two-step procedure. In the first step, the hydrogenphosphate anion (HPO42−) stabilized cobalt(0) nanoclusters were in situ generated from the reduction of cobalt(II) chloride during the hydrolysis of sodium borohydride (NaBH4) in the presence of stabilizer. Next, HPO42− anion-stabilized cobalt(0) nanoclusters were embedded in silica formed by in situ hydrolysis and condensation of tetraethylorthosilicate added as ethanol solution. Co@SiO2 can be separated from the solution by vacuum filtration and characterized by UV-Vis electronic absorption spectroscopy, TEM, SEM-EDX, ATR-IR and ICP-OES techniques. Co@SiO2 are found to be highly active and stable catalysts in the hydrolysis of ammonia borane (AB) even at low cobalt concentration and room temperature. They provide an initial turnover frequency of 13.3 min−1 and 24,400 total turnovers over 52 h in the hydrolysis of AB at 25.0 ± 0.5 °C. Moreover, Co@SiO2 retain 72% and 74% of the initial activity after ten runs recyclability and five cycles reusability test in the hydrolysis of AB, respectively. The kinetics of hydrogen generation from the hydrolysis of AB catalyzed by Co@SiO2 was studied depending on the catalyst concentration, substrate concentration, and temperature. The activation parameters of this catalytic reaction were also determined from the evaluation of the kinetic data.  相似文献   

16.
Τhe feasibility of tailoring the iso-octane steam reforming activity of Cu/CeO2 catalysts through the use of Co as a second active metal (Cu20−xCox, where x = 0, 5, 10, 15, 20 wt%), is investigated. Characterization studies, involving N2 adsorption–desorption at −196 °C (BET), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS) and Temperature Programmed Reduction (H2-TPR), were carried out to reveal the impact of the morphological, structural and surface properties of the catalysts on the reforming performance. The results showed that reforming activity was monotonically increased upon increasing cobalt loading. The Co/CeO2 catalyst demonstrated the optimum performance with a H2 yield of 70–80% in the 600–800 °C temperature interval. The Co/CeO2 catalyst exhibited also excellent stability at temperatures above 700 °C, while Cu-based catalysts rapidly deactivated in long term stability tests. A close correlation between surface/redox properties and steam reforming efficiency was established. The lower reducibility of Co/CeO2 catalysts, associated with the formation of Co3+ species, in Co3O4-like phase, can be accounted for the enhanced carbon tolerance of Co-based catalysts. Furthermore, the high concentration of surface oxygen species on Co/CeO2 catalysts can be considered for their enhanced performance. On the other hand, the Cu-induced easier reducibility of bimetallic catalysts, in conjunction with carbon deposition and active phase sintering can be accounted for their inferior steam reforming performance. Irreversible changes in the redox properties of Cu-based catalysts, taking place under reaction conditions, could be resulted to ceria deactivation thus hindering the redox process to keep on.  相似文献   

17.
Different types of cobalt-based mixed oxide catalysts (20 wt%Co/MgO, 5 wt%Cu-20 wt% Co/MgO, 20 wt%Co/50%MgO–50%Al2O3) were synthesized by the co-precipitation method and applied for hydrogen production from glycerol steam reforming. The catalysts were characterized using X-ray diffraction (XRD), H2-Temperature-programmed reduction (H2-TPR), CO2-Temperature Programmed desorption, CO-Chemisorption, and CHN techniques. The H2-TPR analysis showed the reducibility of cobalt-oxide (5Cu20CM; 5 wt%Cu-20 wt% Co/MgO) was enhanced by the copper, and reduction profiles of cobalt oxide shifted to a lower temperature (<450 °C). Among the catalysts, 5Cu20CM showed a maximum yield of hydrogen (74.6%) with 100% conversion of glycerol to the gaseous phase. The superior catalytic performance of 5Cu20CM for glycerol conversion was attributed to the smaller particle size (7 nm), higher dispersion of cobalt (35.0%), and the higher surface area (56 m2/g) of cobalt metal. Furthermore, Raman spectroscopy of the spent catalysts confirmed that the copper promoted cobalt-magnesium catalyst suppressed the carbon formation, consequently, 5Cu20CM catalyst showed a stable performance up to 30 h.  相似文献   

18.
In situ Co, Cu and Ni nanoparticles were synthesized by chemical reduction of the absorbed Co (II), Cu (II) and Ni (II) ions inside hydrogel networks prepared from 2-acrylamido-2-methyl-1-propansulfonic acid (AMPS) and were used as a catalyst system in the generation of hydrogen in hydrolysis of ammonia borane (AB). Several parameters affecting the hydrolysis reaction such as the type of the metal, the amount of catalyst, the initial concentration of AB, and temperature, were investigated. The activation energy values in the hydrolysis reaction of AB solution in the presence p(AMPS)-Co, p(AMPS)-Cu and p(AMPS)-Ni catalyst systems were calculated as Ea = 47.7 kJ mol−1, 48.8 kJ mol−1 and 52.8 kJ mol−1, respectively. Thus, the catalytic activity of the metal nanoparticles prepared inside the same hydrogel matrix was found to be Ni < Cu < Co.  相似文献   

19.
The fast release of hydrogen from borohydride is highly desired for a fuel cell system. However, the generation of hydrogen from borohydride is limited by the low activity and low stability of the catalyst. Herein, a highly active catalyst is synthesized through a simple one-step chemical reduction using bacterial cellulose (BC) derived carbon as a support for the active Co–B alloy. The morphology and microstructure of the BC/Co–B nanocomposite are characterized by SEM, TEM, XRD, and BET adsorption analysis. The BC/Co–B possesses high surface area (125.31 m2 g?1) high stability and excellent catalytic activity for the hydrolysis of NaBH4. Compared with unsupported Co–B nanocomposite or commercial carbon supported Co–B, the BC/Co–B nanocomposite shows greatly improved catalytic activity for the hydrolysis of NaBH4 with a high hydrogen generation rate of 3887.1 mL min?1 g?1 at 30 °C. An activation energy of 56.37 kJ mol?1 was achieved for the hydrolysis reaction. Furthermore, the BC/Co–B demonstrated excellent stability. These results indicate that the BC/Co–B nanocomposite is a promising candidate for the hydrolysis of borohydrides.  相似文献   

20.
Thin films of Carbon-supported Co–B nanoparticles were synthesized by using Pulsed Laser Deposition (PLD) and used as catalysts in the hydrolysis of Ammonia Borane (AB) to produce molecular hydrogen. Amorphous Co–B-based catalyst powders, produced by chemical reduction of cobalt salts, were used as target material for nanoparticles-assembled Co–B film catalysts preparation through PLD. Various Ar pressures (10–50 Pa) were used during deposition of carbon films to obtain extremely irregular and porous carbon support with high surface area prior to Co–B film deposition. Surface morphology of the catalyst films was studied using Scanning Electron Microscopy, while structural characterization was carried out using X-Ray diffraction. The hydrogen generation rate attained by carbon-supported Co–B catalyst film is significantly higher as compared to unsupported Co–B film and conventional Co–B powder. Almost complete conversion (95%) of AB was obtained at room temperature by using present film catalyst. Morphological analysis showed that the Co–B nanoparticles produced after the laser ablation process act as active catalytic centers for hydrolysis while the carbon support provides high initial surface area for the Co–B nanoparticles with better dispersion and tolerance against aggregation. The efficient nature of our carbon-supported Co–B film is well supported by the obtained very low activation energy (∼29 kJ (mol)−1) and exceptionally high H2 generation rate (13.5 L H2 min−1 (g of Co)−1) by the hydrolysis of AB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号