首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 3 毫秒
1.
Nanosizing is efficient as the dual-tuning of thermodynamics and kinetics for Mg-based hydrogen storage materials. The in-situ synthesis of nanocomposites through hydrogen-induced decomposition from long-period stacking ordered phase is proved effective to achieve active nano-sized catalysts with uniform dispersion. In this study, the Mg93Cu7-xYx (x = 0.67, 1.33, and 2) alloys with equalized Mg–Mg2Cu eutectic and 14H long-period stacking ordered phase of Mg92Cu3.5Y4.5 are prepared. Its solidification path is determined as α-Mg, 14H–Mg2Cu pair and Mg–Mg2Cu eutectic. The increased Y/Cu atomic ratio lowers the first-cycle hydrogenation rate of the alloys due to the increased 14H–Mg2Cu structure and reduced Mg–Mg2Cu eutectic interfaces. After the hydrogen-induced decomposition of the long-period stacking ordered phase, MgCu2 and YH3 nanoparticles are in-situ formed, and the following activation process significantly accelerates. The YH3 nanoparticles partly decompose to YH2 at 300 °C in vacuum and Mg–Mg2Cu-YHx nanocomposites are in-situ formed. The nano-sized YH2 helps catalyze H2 dissociation and the YHx/Mg interfaces stimulate H diffusion and the nucleation of MgH2. Therefore, the Mg93Cu5Y2 composite shows the fastest absorption rates. However, due to the positive effect of YHx/Mg interfaces on H diffusion and the negative effect of YH3 nanophases on the hydride decomposition, the minimum activation energy of 115.43 kJ mol−1 is obtained for the desorption of the Mg93Cu5.67Y1.33 hydride.  相似文献   

2.
The phase relations and hydrogen storage properties of the (Ca2−xMgx)Ni7 alloys were investigated. It was found that the maximum solid solubility of Mg in the (Ca,Mg)2Ni7 phase is about x = 0.5 in the present study. The ‘inter-block-layer’ type stacking faults exist in the (Ca,Mg)2Ni7 phase when Mg content is very low. However, the density of stacking faults decreases and the lattice parameters reduce as Mg content increases to its maximum solid solubility. Thus the (Ca1.5Mg0.5)Ni7 alloy has a good reversibility of hydrogen absorption–desorption.  相似文献   

3.
Mg95Sn3Zn2 alloy was prepared by mechanical alloying. The phase constituents and phase transition were analyzed by X-ray diffraction (XRD) method. The microstructure was characterized by scanning electron microscope (SEM). The hydrogen storage properties were evaluated in detail by the measurements of isothermal hydrogen absorption and desorption, and pressure-composition isotherms (PCI) using the Sieverts method. The addition of Zn benefits to extend the solubility of Sn in the Mg lattice, as a result supersaturated Mg(Sn, Zn) ternary solid solution was synthesized by mechanical alloying, which decomposed to MgH2, Sn and MgZn2 in the hydrogenating process. The in situ formed nanostructure Mg2Sn and MgZn2 have positive effects on the hydrogen absorption and desorption of Mg. Mg95Sn3Zn2 alloy showed significantly improved kinetics with lowered hydrogen absorption and desorption activation energies of 38.1 kJ/mol and 86.6 kJ/mol respectively, and exhibited a reduced dehydriding enthalpy of 67.0 ± 1.9 kJ/(mol·H2).  相似文献   

4.
The Mg-based hydrogen storage alloy with multiple platforms is successfully prepared by ball milling Co powder and Mg-RE-Ni precursor alloy, and its hydrogen storage behavior was investigated in detail by XRD, EDS, TEM, PCI, and DSC methods. The ball-milled alloy consists of the main phase Mg, the catalytic phases Mg2Ni, Mg2Co as well as a small amount of Mg12Ce, and convert into the MgH2–CeH2.73-Mg2NiH4–Mg2CoH5 composite after hydrogenation. The composite has three PCI platforms corresponding to the reversible de/hydrogenation reaction of Mg/MgH2, Mg2Ni/Mg2NiH4 and Mg6Co2H11/Mg2CoH5. Among them, the transformation between Mg2Ni and Mg2NiH4 triggers the “spill-over” effect which promote the decomposition of MgH2 phases and enhances the hydrogen desorption kinetics. Meanwhile, the conversion of the Mg6Co2H11 to Mg2CoH5 phase induces the “chain reaction” effect, which leads to preferential nucleation of Mg phase and improves the hydrogen absorption kinetics. Therefore, the Mg-RE-Ni-Co alloy has a double improvement on hydrogen absorption and desorption kinetics. Concretely, the alloy has an optimal hydrogen absorption temperature of 200 °C, at which it can absorb 5.5 wt. % H2 within 40 s. Under the conditions, the capacity of absorption almost reaches the maximum reversible value (about 5.6 wt. %). Besides, the alloy has a dehydrogenation activation energy of 67.9 kJ/mol and can desorb 5.0 wt. % H2 within 60 min at the temperature of 260 °C.  相似文献   

5.
An advanced and newly developed severe plastic deformation (SPD) method called accumulative fold-forging (AFF) was applied to produce layered nanostructured MgNi alloys exhibiting superior hydrogen storage capacity. Microstructural developments and storage properties were characterized in depth to correlate the structure and performance of this advanced material. The enhanced hydrogen storage performance of the magnesium-based layered composite material was investigated in comparison to the pristine state by conducting hydrogenation and dehydrogenation testing. It was also shown that the hydrogen uptake and release characteristics can be controlled by adjusting the layered structure or the Mg: Ni stoichiometry ratio. Refining the grain structure of the magnesium alloy down to the nano-scale range (~400–900 nm) by applying high cycles AFF consolidation to promote creation of multi-million nanometric interfaces led to superior storage performance with a remarkable hydrogen absorption capacity of up to ~1.425 wt%. X-ray diffraction (XRD) analysis of the hydrogenated products revealed the formation of MgH2 that indicates the dominance of the magnesium matrix for controlling the hydrogen storage behavior of the layered Mg/Ni composite material. Finally, the relationship between the directional hydrogen storage behavior and the induced structural features upon AFF treatment were also established using quantitative characterization and analytical tools.  相似文献   

6.
Mg-5wt%Ni-2.5wt%Fe-2.5wt%V (named Mg-5Ni-2.5Fe-2.5V) powder was prepared by reactive mechanical grinding using a planetary ball mill. The activation process, the changes in phase and microstructure with hydriding-dehydriding cycling, and the variations in the hydriding and dehydriding rates with temperature were investigated. The rate-controlling step for the dehydriding reaction of Mg-5Ni-2.5Fe-2.5V was analyzed by using a spherical moving boundary model. As the temperature increased from 473 K through 623 K, the initial hydrogen absorption rate under 12 bar H2 decreased, while the hydrogen desorption rate under 1.0 bar H2 increased.  相似文献   

7.
Herein, we describe the synthesis of Mg2FeH6 by hydrogenation of a 2.1 Mg:Fe (mol/mol) powder mixture prepared by cold roll milling (CRM) in air. The thickness of Fe layers and the amount and distribution of oxygen with number of CRM passes were systematically analyzed. CRM-induced microstructural changes were shown to play an important role in Mg2FeH6 formation. Although repeated CRM effectively decreased the Fe layer thickness to values sufficient for the fast formation of Mg2FeH6, too much CRM passes decreased the total degree of hydrogenation due to inevitable oxidation of Mg in air. Both microstructure refinement and minimal oxidation are the prerequisites for efficient Mg2FeH6 synthesis, with the former condition being achievable by optimizing the number of milling passes, and the latter one requiring CRM under an inert atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号