首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Synthesis of lithium borohydridofluorides may pave a new way to pursue improved hydrogen storage properties of LiBH4 as reversible hydrogen storage materials that fit the fuel cell application. The main products of the hydrogen absorption by 2LiF–MgB2 composite are MgF2 and LiBH4. In addition to them, LiBH4−xFx compounds might be present during hydrogen absorption–desorptions and play important role on their kinetics and reversibility.  相似文献   

2.
Significant improvements in the hydrogen absorption/desorption properties of the 2LiNH2–1.1MgH2–0.1LiBH4 composite have been achieved by adding 3wt% ZrCo hydride. The composite can absorb 5.3wt% hydrogen under 7.0 MPa hydrogen pressure in 10 min and desorb 3.75wt% hydrogen under 0.1 MPa H2 pressure in 60 min at 150 °C, compared with 2.75wt% and 1.67wt% hydrogen under the same hydrogenation/dehydrogenation conditions without the ZrCo hydride addition, respectively. TPD measurements showed that the dehydrogenation temperature of the ZrCo hydride-doped sample was decreased about 10 °C compared to that of the pristine sample. It is concluded that both the homogeneous distribution of ZrCo particles in the matrix observed by SEM and EDS and the destabilized N–H bonds detected by IR spectrum are the main reasons for the improvement of H-cycling kinetics of the 2LiNH2–1.1MgH2–0.1LiBH4 system.  相似文献   

3.
2LiBH4 + MgH2 system is considered as an attractive candidate for reversible hydrogen storage with high capacity and favorable thermodynamics. However, its reaction kinetics has to be further improved for the practical application. In this work, we investigated the effect of NbCl5 additive on the de/hydrogenation kinetics and microstructure refinement in 2LiH–MgB2 composite systematically. The hydrogenation and dehydrogenation kinetics of 2LiH–MgB2 composite can be significantly enhanced with the increase of NbCl5 content. The 3 mol% NbCl5 doped 2LiH–MgB2 composite exhibits the superior reversible hydrogen storage performance, which requires 50 min to uptake 9.0 wt% H2 at 350 °C and release 8.5 wt% H2 at 400 °C, respectively. In contrast, the undoped 2LiH–MgB2 sample uptakes 6.2 wt% H2 and releases 3.1 wt% H2 under identical measurement conditions. Moreover, the 3 mol% NbCl5 doped 2LiH–MgB2 composite can release more than 9.0 wt% H2 within 300 min at 400 °C without obvious degradation of capacity over the first 10 cycles. Microstructure analyses clearly indicate that NbCl5 additive first reacts with LiH to form Nb and LiCl during ball-milling process, and then NbH is formed after the first hydrogenation and stabilized upon further de/hydrogenation cycling. The well-distributed NbH active species play an important role in the improvement of de/hydrogenation kinetics for Li–Mg–B–H system through facilitating hydrogen diffusion rapidly as well as prevent the particles from further growth in the subsequent hydrogenation and dehydrogenation processes.  相似文献   

4.
NaBH4 is a candidate for H2 storage in solid phase. NaBH4 hydrolysis readily produces H2 gas and NaBO2 which can regenerate NaBH4 with pressurized hydrogen and the aid of a reducing agent like Magnesium above 500 °C. This paper deals with the NaBH4 thermochemical regeneration from the NaBO2–Mg–H2 ternary system at isothermal temperatures between 558 and 634 °C and H2 pressure in the range 2–31 bar. A simplified Langmuir adsorption model has been applied for the interpretation of the in-situ H2 pressure variations. The applied model is zero-dimensional but provides a reasonable approach to identify the rate determining step and acquire relevant thermodynamic and kinetic parameters such as equilibrium constant (Keq), Gibbs free energy (ΔrG0) and reaction rate coefficients (k). The study provides an apparent activation energy and Gibbs free energy of this process of 29.2 kJ/mol and −76.9 kJ/mol, respectively.  相似文献   

5.
Rehydrogenation behavior of 6LiBH4 + CaH2 composite with NbF5 has been studied between 350 and 500 °C after dehydrogenation at 450 °C. The composite exhibits the best rehydrogenation feature at 450 °C in terms of the overall rehydrogenation rate and the amount of absorbed hydrogen. It is found that about 9 wt% hydrogen is absorbed at 450 °C for 12 h. Up to 10 dehydrogenation–hydrogenation cycles have been carried out for the composite. It is demonstrated that 6LiBH4 + CaH2 with 15 wt% NbF5 maintains a reversible hydrogen storage capacity of about 6 wt% at 450 °C after a slight degradation between the 1st and 5th cycles. The addition of NbF5 seems to improve the cycle properties by retarding microstructural coarsening during cycles.  相似文献   

6.
The effect of MgFe2O4 on the hydrogen storage properties of the composite Na3AlH64LiBH4 was studied for the first time, where it was found that MgFe2O4 addition decreased the onset desorption temperature of Na3AlH64LiBH4. Hydrogen (~9.5 wt%) was released in three stages and the dehydrogenation temperatures were reduced to 80 °C, 350 °C, and 430 °C for the first, second, and third stage, respectively. The absorption kinetics of Na3AlH64LiBH4 was also significantly improved due to the catalytic effect of MgFe2O4. Using Kissinger analysis, the apparent activation energies of decomposition of the Li3AlH6 and NaBH4 stages in Na3AlH64LiBH4-10 wt% MgFe2O4 were calculated to be 72 and 141 kJ/mol, respectively. These values were considerably lower than the corresponding values for the undoped composite. X-ray diffraction analysis revealed the formation of new products such as MgO and Fe during the heating process. Our results suggest that MgFe2O4 enhanced the hydrogen storage properties of Na3AlH64LiBH4 through the formation of active species, such as MgO and Fe.  相似文献   

7.
The influence of different titanium additives on hydrogen sorption in LiH–MgB2 system has been investigated. For all the composites LiH–MgB2X (X = TiF4, TiO2, TiN, and TiC), prepared by ball-milling in molar ratios 2:1:0.1, five hydrogen uptake/release cycles were performed. In-situ synchrotron radiation powder X-ray diffraction (SR-PXD) and attenuated total reflection infrared spectroscopy (ATR-IR) have been used to characterize crystal phases developed during the hydrogen absorption–desorption cycles.  相似文献   

8.
NaBH4–NH3BH3 composites were prepared by high-energy ball-milling processes for hydrogen generation through hydrolysis. After ball milling, there were no new phases found in the XRD patterns of NaBH4–NH3BH3 composites. The experimental results demonstrate that when the molar ratios of NaBH4–NH3BH3 composites range from 1:4 to 2:1, these composites can release above 90% hydrogen in 30 min at 70 °C. Comparing with neat NaBH4 or NH3BH3, the hydrolysis properties of these composites are greatly enhanced. And the hydrolysis reaction mechanism is turned out to be more explicit as Na2B4O5(OH)4·8H2O appears in the hydrolysis products. Since the preparation processes of these composites are simple and cost-effective and the hydrolysis of these composites achieves efficient hydrogen release, it is promising that this kind of composites can be applied in hydrogen generation.  相似文献   

9.
In this article, we investigate the ternary LiNH2–MgH2–LiBH4 hydrogen storage system by adopting various processing reaction pathways. The stoichiometric ratio of LiNH2:MgH2:LiBH4 is kept constant with a 2:1:1 molar ratio. All samples are prepared using solid-state mechano-chemical synthesis with a constant rotational speed, but with varying milling duration. Furthermore, the order of addition of parent compounds as well as the crystallite size of MgH2 are varied before milling. All samples are intimate mixtures of Li–B–N–H quaternary hydride phase with MgH2, as evidenced by XRD and FTIR measurements. It is found that the samples with MgH2 crystallite sizes of approximately 10 nm exhibit lower initial hydrogen release at a temperature of 150 °C. Furthermore, it is observed that the crystallite size of Li–B–N–H has a significant effect on the amount of hydrogen release with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160 °C and the other around 300 °C. The main hydrogen release temperature is reduced from 310 °C to 270 °C, while hydrogen is first reversibly released at temperatures as low as 150 °C with a total hydrogen capacity of ∼6 wt.%. Detailed thermal, capacity, structural and microstructural properties are discussed and correlated with the activation energies of these materials.  相似文献   

10.
In the present study, we employed a multi-component combination strategy to constitute an AB/LiNH2/LiBH4 composite system. Our study found that mechanically milling the AB/LiNH2/LiBH4 mixture in a 1:1:1 molar ratio resulted in the formation of LiNH2BH3 (LiAB) and new crystalline phase(s). A spectral study of the post-milled and the relevant samples suggests that the new phase(s) is likely ammoniate(s) with a formula of Li2−x(NH3)(NH2BH3)1−x(BH4) (0 < x < 1). The decomposition behaviors of the Li2−x(NH3)(NH2BH3)1−x(BH4)/xLiAB composite were examined using thermal analysis and volumetric method in a wide temperature range. It was found that the composite exhibited advantageous dehydrogenation properties over LiAB and LiAB·NH3 at moderate temperatures. For example, it can release ∼7.1 wt% H2 of purity at temperature as low as 60 °C, with both the dehydrogenation rate and extent far exceeding that of LiAB and LiAB·NH3. A selectively deuterated composite sample has been prepared and examined to gain insight into the dehydrogenation mechanism of the Li2−x(NH3)(NH2BH3)1−x(BH4)/xLiAB composite. It was found that the LiBH4 component does not participate in the dehydrogenation reaction at moderate temperatures, but plays a key role in strengthening the coordination of NH3. This is believed to be a major mechanistic reason for the favorable dehydrogenation property of the composite at moderate temperatures.  相似文献   

11.
A series of Ni–Fe–B catalysts with different Fe/(Fe + Ni) molar ratios, used for the hydrolysis of NaBH4, were prepared by chemical reduction of NiCl2 and FeCl3 mixed solution with NaBH4. The measurements revealed that the catalysts with the molar ratio of Fe/(Fe + Ni) (30%) exhibited the highest catalytic activity, and the optimal reduction temperature is 348 K. In addition, the effects of the concentration of NaBH4, NaOH and the hydrolytic temperature of NaBH4 were discussed in detail. The results show that the reaction rate of hydrolysis first rises up and then goes down subsequently with the increase of NaBH4 concentration, as well as the concentration of NaOH. The activation energy of the hydrolysis for Ni–Fe–B catalysts is fitted to 57 kJ/mol. The maximum value of hydrogen generation is 2910 ml/(min g) at 298 K.  相似文献   

12.
In a previous paper, it was demonstrated that a MgH2–NaAlH4 composite system had improved dehydrogenation performance compared with as-milled pure NaAlH4 and pure MgH2 alone. The purpose of the present study was to investigate the hydrogen storage properties of the MgH2–NaAlH4 composite in the presence of TiF3. 10 wt.% TiF3 was added to the MgH2–NaAlH4 mixture, and its catalytic effects were investigated. The reaction mechanism and the hydrogen storage properties were studied by X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry (DSC), temperature-programmed-desorption and isothermal sorption measurements. The DSC results show that MgH2–NaAlH4 composite milled with 10 wt.% TiF3 had lower dehydrogenation temperatures, by 100, 73, 30, and 25 °C, respectively, for each step in the four-step dehydrogenation process compared to the neat MgH2–NaAlH4 composite. Kinetic desorption results show that the MgH2–NaAlH4–TiF3 composite released about 2.4 wt.% hydrogen within 10 min at 300 °C, while the neat MgH2–NaAlH4 sample only released less than 1.0 wt.% hydrogen under the same conditions. From the Kissinger plot, the apparent activation energy, EA, for the decomposition of MgH2, NaMgH3, and NaH in the MgH2–NaAlH4–TiF3 composite was reduced to 71, 104, and 124 kJ/mol, respectively, compared with 148, 142, and 138 kJ/mol in the neat MgH2–NaAlH4 composite. The high catalytic activity of TiF3 is associated with in situ formation of a microcrystalline intermetallic Ti–Al phase from TiF3 and NaAlH4 during ball milling or the dehydrogenation process. Once formed, the Ti–Al phase acts as a real catalyst in the MgH2–NaAlH4–TiF3 composite system.  相似文献   

13.
Co-based catalyst can significantly improve the dehydrogenation kinetics of the eutectic composite of LiBH4–Mg(BH4)2 (1/1 M ratio). The onset hydrogen desorption temperature of the composite is at about 155 °C, which is ca. 245, 110 or 27 °C lower than that of LiBH4, Mg(BH4)2 or pristine LiBH4–Mg(BH4)2, respectively. Upon holding the samples at 270 °C, the Co catalyzed composite can release hydrogen at a rate 1.6 times faster than that of the pristine one. Electron Paramagnetic Resonance (EPR) characterization evidenced that Co was in a reduced state of Co+ which may serve as the functional species in catalyzing the dehydrogenation of the composite.  相似文献   

14.
Cobalt–phosphorus (Co–P) catalysts, which were electroless deposited on Cu sheet, have been investigated for hydrogen generation from alkaline NaBH4 solution. The microstructures of the as-prepared Co–P catalysts and their catalytic activities for hydrolysis of NaBH4 are analyzed in relation to pH value, NaH2PO2 concentration, and the deposition time. Experimental results show that the Co–P catalyst formed in the bath solution with pH value of 12.5, NaH2PO2 concentration of 0.8 M, and the deposition time no more than 6 min presents the highest hydrogen generation rate of 1846 mL min−1 g−1. Furthermore, the as-prepared catalyst also shows good cycling capability and the corresponding activation energy is calculated to be 48.1 kJ mol−1. The favorable catalytic performance of the electroless-deposited Co–P catalysts indicates their potential application for quick hydrogen generation from hydrolysis of NaBH4 solution.  相似文献   

15.
Single-walled carbon nanotubes (SWNTs) were mechanically milled with LiBH4/MgH2 mixture, and examined with respect to its effect on the reversible dehydrogenation properties of the Li–Mg–B–H system. Experimental results show that the addition of SWNTs results in an enhanced dehydriding rate and improved cyclic stability of the LiBH4/MgH2 composite. For example, the LiBH4/MgH2 composite with 10 wt% purified SWNTs additive can release nearly 10 wt% hydrogen within 20 min at 450 °C, with an average dehydriding rate over 2 times faster than that of the neat LiBH4/MgH2 sample. Based on the results of phase analysis and a series of designed experiments, the mechanism underlying the observed property improvement was discussed.  相似文献   

16.
The hydrogen sorption behavior of the Mg2FeH6–MgH2 hydride system is investigated via in-situ synchrotron and laboratory powder X-ray diffraction (SR-PXD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), particle size distribution (PSD) and volumetric techniques. The Mg2FeH6–MgH2 hydride system is obtained by mechanical milling in argon atmosphere followed by sintering at high temperature and hydrogen pressure. In-situ SR-PXD results show that upon hydriding MgH2 is a precursor for Mg2FeH6 formation and remained as hydrided phase in the obtained material. Diffusion constraints preclude the further formation of Mg2FeH6. Upon dehydriding, our results suggest that MgH2 and Mg2FeH6 decompose independently in a narrow temperature range between 275 and 300 °C. Moreover, the decomposition behavior of both hydrides in the Mg2FeH6–MgH2 hydride mixture is influenced by each other via dual synergetic-destabilizing effects. The final hydriding/dehydriding products and therefore the kinetic behavior of the Mg2FeH6–MgH2 hydride system exhibits a strong dependence on the temperature and pressure conditions.  相似文献   

17.
The binary phase diagram NaBO2–H2O at ambient pressure, which defines the different phase equilibria that could be formed between borates, end-products of NaBH4 hydrolysis, has been reviewed. Five different solid borates phases have been identified: NaBO2·4H2O (Na[B(OH)4]·2H2O), NaBO2·2H2O (Na[B(OH)4]), NaBO2·2/3H2O (Na3[B3O4(OH)4]), NaBO2·1/3H2O (Na3[B3O5(OH)2]) and NaBO2 (Na3[B3O6]), and their thermal stabilities have been studied. The boundaries of the different Liquid + Solid equilibria for the temperature range from −10 to 80 °C have been determined, confirming literature data at low temperature (20–50 °C). Moreover the following eutectic transformation, Liq. → Ice + NaBO2·4H2O, occurring at −7 °C, has been determined by DSC. The Liquid–Vapour domain has been studied by ebullioscopy. The invariant transformation Liq.  Vap. + NaBO2·2/3H2O has been estimated at 131.6 °C. This knowledge is paramount in the field of hydrogen storage through NaBH4 hydrolysis, in which borate compounds were obtained as hydrolysis reaction products. As a consequence, the authors propose a comparison with previous NaBO2–H2O binary phase diagrams and its consequence related to hydrogen storage through NaBH4 hydrolysis.  相似文献   

18.
As a light-weight and low-cost hydrogen storage composite, NaNH2–NaBH4 (molar ratio of 2:1) was prepared by a liquid phase ball milling (LPBM) method under the co-protection of argon and cyclohexane. The structure evolution and the thermal decomposition performance of the as-prepared sample were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermo gravimetric-differential thermal analysis (TG-DTA), respectively. It is found that the interaction of NaNH2 with NaBH4 is enhanced by LPBM, thus causes a preferred orientation for the crystal structure of NaNH2, and the red-shifts of the N–H stretching vibration and the B–H stretching vibration. In addition, the as-prepared NaNH2–NaBH4 (2/1) can achieve a low activation energy of 76.4 kJ mol−1 during the main decomposition stage, which is only 47.9% of that of the one synthesized via a solid state ball milling (SSBM) method, and is very close to that of the Co–B catalyst promoted one. This indicates the LPBM method is an efficient way to get high-performance NaNH2–NaBH4, whose thermal decomposition kinetics can be greatly improved without any catalyst.  相似文献   

19.
In this paper, we report the hydrogen storage properties and reaction mechanism of NaAlH4–MgH2–LiBH4 (1:1:1) ternary-hydride system prepared by ball milling. It was found that during ball milling, the NaAlH4/MgH2/LiBH4 combination converted readily to the mixture of LiAlH4/MgH2/NaBH4 and there is a mutual destabilization among the hydrides. Three major dehydrogenation steps were observed in the system, which corresponds to the decomposition of LiAlH4, MgH2, and NaBH4, respectively. The onset dehydrogenation temperature of MgH2 in this system is observed at around 275 °C, which is over 55 °C lower from that of as-milled MgH2. Meanwhile, NaBH4-relevant decomposition showed significant improvement, starts to release hydrogen at 370 °C, which is reduced by about 110 °C compared to the as-milled NaBH4. The second and third steps decomposition enthalpy of the system were determined by differential scanning calorimetry measurements and the enthalpies were changed to be 61 and 100 kJ mol−1 H2 respectively, which are smaller than that of MgH2 and NaBH4 alone. From the Kissinger plot, the apparent activation energy, EA, for the decomposition of MgH2 and NaBH4 in the composite was reduced to 96.85 and 111.74 kJ mol−1 respectively. It is believed that the enhancement of the dehydrogenation properties was attributed to the formation of intermediate compounds, including Li–Mg, Mg–Al, and Mg–Al–B alloys, upon dehydrogenation, which change the thermodynamics of the reactions through altering the de/rehydrogenation pathway.  相似文献   

20.
In this work, the performance of a hydrogen generation system with an electroless-deposited Co–P/Ni foam catalyst for NaBH4 hydrolysis was evaluated. The performance of a hydrogen generator using a combination of Co/γ-Al2O3 and Co–P/Ni foam catalysts was also evaluated in order to address the shortcomings with the individual catalysts. The generator had high conversion efficiency, fast response characteristics, and strong catalyst durability. Hydrogen generation tests were performed to investigate the effect of the composition of the NaBH4 solution on the hydrogen generation properties. The generator's conversion efficiency decreased with an increase in the amount of solute dissolved in NaBH4 solution because of the accumulation of precipitates on the catalyst, and NaOH concentration had a greater effect on the hydrogen generation properties than did NaBH4 concentration. According to these results, the hydrogen generation system with the Co–P/Ni foam catalyst is suitable as a hydrogen supplier for proton exchange membrane fuel cells owing to the strong durability and inexpensive cost of the catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号