首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The various Mg–B–Al–H systems composed of Mg(BH4)2 and different Al-sources (metallic Al, LiAlH4 and its decomposition products) have been investigated as potential hydrogen storage materials. The role of Al was studied on the dehydrogenation and the rehydrogenation of the systems. The results indicate that the different Al-sources exhibit a similar improving effect on the dehydrogenation properties of Mg(BH4)2. Taking the Mg(BH4)2 + LiAlH4 system as an example, at first LiAlH4 rapidly decomposes into LiH and Al, then Mg(BH4)2 decomposes into MgH2 and B, finally the MgH2 reacts with Al, LiH and B, which forms Mg3Al2 and MgAlB4. The system starts to desorb H2 at 140 °C and desorbs 3.6 wt.% H2 below 300 °C, while individual Mg(BH4)2 starts to desorb H2 at 250 °C and desorbs only 1.3 wt.% H2 below 300 °C. The isothermal desorption kinetics of the Mg–B–Al–H systems is about 40% faster than that of Mg(BH4)2 at the hydrogen desorption ratio of 90%. In addition, the Mg–B–Al–H systems show partial reversibility at moderate temperature and pressure. For Al-added system, the product of rehydrogenation is MgH2, while for LiAlH4-added system the product is composed of LiBH4 and MgH2.  相似文献   

2.
The thermal transformations in the lithium alanate-amide system consisting of lithium aluminum hydride (LiAlH4) and lithium amide (LiNH2), mixed in a 1:1 M ratio, were investigated using the pressure-composition-temperature analysis, solid-state nuclear magnetic resonance, X-ray powder diffraction, and residual gas analysis. Below 250 °C, the alanate decomposes into Al, LiH and H2, through the formation of Li3AlH6, whereas the amide remains largely intact. The release of gaseous hydrogen corresponds to approximately 5 wt%. Above 250 °C, additional ∼4 wt% of hydrogen is produced through solid-state reactions among LiNH2, LiH and metallic Al, through the formation of intermetallic Li-Al binary alloy and an unidentified intermediate. The overall reaction of the thermochemical transformation of the LiAlH4-LiNH2 mixture results in the production of Li3AlN2, metallic Al, LiH and the release of 9 wt% of gaseous hydrogen. The reaction mechanism of the thermal decomposition is different from one identified earlier during mechanical treatment of the same system. Rehydrogenation of the thermally-decomposed products of LiAlH4-LiNH2 mixture using high hydrogen pressure (180 bar) and heating (275 °C) yields LiNH2 and amorphous aluminum nitride (AlN).  相似文献   

3.
Two new cobalt-based ammine borohydrides were prepared via ball milling of LiBH4 and CoCln·3NH3 (n = 3, 2) with molar ratios of 3:1 and 2:1, respectively. X-ray diffraction (XRD) results revealed the as-prepared composites having amorphous state. Thermogravimetric analysis-mass spectrometry (TG-MS) measurements showed that the two composites mainly release H2, concurrent with the evolution of a small amount of NH3. Further results showed that the excessive addition of LiBH4 can suppress the liberation of NH3, resulting in the release of H2 with a high purity (>99 mol.%). By combination with the temperature-programmed-desorption (TPD) results, the CoCl3·3NH3/4LiBH4 and CoCl2·3NH3/3LiBH4composites can release 7.3 wt.% (4.2 wt.% including LiCl) and 4.2 wt.% (2.0 wt.% including LiCl) pure hydrogen, respectively, in the temperature range of 25–300 °C. Isothermal dehydrogenation results reveal that CoCl3·3NH3/3LiBH4 shows favorable dehydrogenation rate at low temperatures, releasing about 5.2 wt.% (2.9 wt.% including LiCl) of hydrogen within 45 min at 80 °C.  相似文献   

4.
Co-based catalyst can significantly improve the dehydrogenation kinetics of the eutectic composite of LiBH4–Mg(BH4)2 (1/1 M ratio). The onset hydrogen desorption temperature of the composite is at about 155 °C, which is ca. 245, 110 or 27 °C lower than that of LiBH4, Mg(BH4)2 or pristine LiBH4–Mg(BH4)2, respectively. Upon holding the samples at 270 °C, the Co catalyzed composite can release hydrogen at a rate 1.6 times faster than that of the pristine one. Electron Paramagnetic Resonance (EPR) characterization evidenced that Co was in a reduced state of Co+ which may serve as the functional species in catalyzing the dehydrogenation of the composite.  相似文献   

5.
Rehydrogenation behavior of 6LiBH4 + CaH2 composite with NbF5 has been studied between 350 and 500 °C after dehydrogenation at 450 °C. The composite exhibits the best rehydrogenation feature at 450 °C in terms of the overall rehydrogenation rate and the amount of absorbed hydrogen. It is found that about 9 wt% hydrogen is absorbed at 450 °C for 12 h. Up to 10 dehydrogenation–hydrogenation cycles have been carried out for the composite. It is demonstrated that 6LiBH4 + CaH2 with 15 wt% NbF5 maintains a reversible hydrogen storage capacity of about 6 wt% at 450 °C after a slight degradation between the 1st and 5th cycles. The addition of NbF5 seems to improve the cycle properties by retarding microstructural coarsening during cycles.  相似文献   

6.
A comparative study was performed on four LiBH4-based hydrogen storage composites 2LiBH4 + MgX2 and 6LiBH4 + CaX2 (X = H and F). The composites with fluorides and those with corresponding hydrides exhibited similar hydrogen storage properties. The dehydrogenation of 2LiBH4 + MgF2 demonstrated a strong dependence on the hydrogen back pressure, similar to that of 2LiBH4 + MgH2. The reversible hydrogen storage of 2LiBH4 + MgF2 was achieved under a back pressure of 5 bar at 450 °C. Dehydrogenation under lower H2 pressures resulted in the production of Mg and thus a partial reversibility. In contrast, both 6LiBH4 + CaH2 and 6LiBH4 + CaF2 revealed reversible hydrogen storage properties regardless of the hydrogen back pressure. The structural difference between MgB2 and CaB6 may account for the observed differences in hydrogen storage properties of the Mg- and Ca-containing LiBH4 reactive composites.  相似文献   

7.
A significant decrease in the dehydrogenation temperature of Mg(AlH4)2 was achieved by low-energy ball milling with TiF4. Approximately 8.0 wt% of hydrogen was released from the Mg(AlH4)2-0.025TiF4 sample with an on-set temperature of 40 °C, which represents a decrease of 75 °C relative to pristine Mg(AlH4)2. In contrast to the three-step reaction for pristine Mg(AlH4)2, hydrogen desorption from the TiF4-doped sample involves a two-step process because the Ti-based species participates in the dehydrogenation reaction. The presence of TiF4 alters the nucleation and growth of the dehydrogenation product, significantly decreasing the activation energy barrier of the first step in the dehydrogenation of Mg(AlH4)2. Further hydrogenation measurements revealed that the presence of the Ti-based species was also advantageous for hydrogen uptake, as the on-set hydrogenation temperature was only 100 °C for the dehydrogenated TiF4-doped sample, compared with 130 °C for the additive-free sample.  相似文献   

8.
Two composite hydrogen storage materials based on Mg2FeH6 were investigated for the first time. The Mg2FeH6–LiBH4 composite of molar ratio 1:5 showed a hydrogen desorption capacity of 5.6 wt.% at 370 °C, and could be rehydrogenated to 3.6 wt.% with the formation of MgH2, as the material was heated to 445 °C and held at this temperature. The Mg2FeH6–LiNH2 composite of 3:10 molar ratio exhibited a hydrogen desorption capacity of 4.3 wt.% and released hydrogen at 100 °C lower then the Mg2FeH6–LiBH4 composite, but this mixture could not be rehydrogenated. Compared to neat Mg2FeH6, both composites show enhanced hydrogen storage properties in terms of desorption kinetics and capacity at these low temperatures. In particular, Mg2FeH6–LiNH2 exhibits a much lower desorption temperature than neat Mg2FeH6, but only Mg2FeH6–LiBH4 re-absorbs hydrogen.  相似文献   

9.
The hydrogen storage properties and mechanisms of the Ca(BH4)2-added 2LiNH2–MgH2 system were systematically investigated. The results showed that the addition of Ca(BH4)2 pronouncedly improved hydrogen storage properties of the 2LiNH2–MgH2 system. The onset temperature for dehydrogenation of the 2LiNH2–MgH2–0.3Ca(BH4)2 sample is only 80 °C, a ca. 40 °C decline with respect to the pristine sample. Further hydrogenation examination indicated that the dehydrogenated 2LiNH2–MgH2–0.1Ca(BH4)2 sample could absorb ca. 4.7 wt% of hydrogen at 160 °C and 100 atm while only 0.8 wt% of hydrogen was recharged into the dehydrogenated pristine sample under the same conditions. Structural analyses revealed that during ball milling, a metathesis reaction between Ca(BH4)2 and LiNH2 firstly occurred to convert to Ca(NH2)2 and LiBH4, and then, the newly developed LiBH4 reacted with LiNH2 to form Li4(BH4)(NH2)3. Upon heating, the in situ formed Ca(NH2)2 and Li4(BH4)(NH2)3 work together to significantly decrease the operating temperatures for hydrogen storage in the Ca(BH4)2-added 2LiNH2–MgH2 system.  相似文献   

10.
LiBH4 can be destabilized by AlH3 addition. In this work, the hydrogen desorption kinetics of the destabilized LiBH4AlH3 composites were investigated. Isothermal hydrogen desorption studies show that the LiBH4 + 0.5AlH3 composite releases about 11.0 wt% of hydrogen at 450 °C for 6 h and behaves better kinetic properties than either the pure LiBH4 or the LiBH4 + 0.5Al composite. The apparent activation energy for the LiBH4 decomposition in the LiBH4 + 0.5AlH3 composite estimated by Kissinger's method is remarkably lowered to 122.0 kJ mol?1 compared with the pure LiBH4 (169.8 kJ mol?1). Besides, AlH3 also improves the reversibility of LiBH4 in the LiBH4 + 0.5AlH3 composite. For the LiBH4 + xAlH3 (x = 0.5, 1.0, 2.0) composites, the decomposition kinetics of LiBH4 are enhanced as the AlH3 content increases. The sample LiBH4 + 2.0AlH3 can release 82% of the hydrogen capacity of LiBH4 in 29 min at 450 °C, while only 67% is obtained for the LiBH4 + 0.5AlH3 composite in 110 min. Johnson?Mehl?Avrami (JMA) kinetic studies indicate that the reaction LiBH4 + Al → ‘LiAlB’ + AlB2 + H2 is controlled by the precipitation and subsequently growth of AlB2 and LiAlB compounds with an increasing nucleation rate.  相似文献   

11.
LiBH4 is regarded as a promising hydrogen storage material due to its high hydrogen density. In this study, the dehydrogenation properties of LiBH4 were remarkably enhanced by doping hydrogenated Mg3RE compounds (RE denotes La, Ce, Nd rare earth metals), which are composed of nanostructured MgH2 and REH2+x (denoted as H − Mg3RE). For the LiBH4 + H − Mg3La mixture, the component LiBH4 desorbed 6 wt.% hydrogen even at a relatively low temperature of 340 °C, far lower than the desorption temperature of pure LiBH4 or the 2LiBH4 + MgH2 system. This kinetic improvement is attributed to the hydrogen exchange mechanism between the H − Mg3La and LiBH4, in the sense that the decomposition of MgH2 and LaH2+x catalyzed the dehydrogenation of LiBH4 through hydrogen exchange effect rather than mutual chemical reaction requiring higher temperature and hydrogen pressure. However, prior to fast hydrogen release, the hydrogen exchange effect suppressed the dehydriding of MgH2 and elevated its desorption temperature. It is expected to strengthen the hydrogen exchange effect by compositing the LiBH4 with other nanosized metal hydrides and to obtain better dehydrogenation properties.  相似文献   

12.
Stepwise reactions were observed in the ball milling and heating process of the LiBH4-NaNH2 system by means of X-ray diffraction (XRD) and Fourier transform infrared spectrometry (FT-IR). During the ball milling process, two concurrent reactions take place in the mixture: 3LiBH4 + 4NaNH2 → Li3Na(NH2)4 + 3NaBH4 and LiBH4 + NaNH2 → LiNH2 + NaBH4. The heating process from 50 °C to 400 °C is mainly the concurrent reactions of Li3Na(NH2)4 + 3LiBH4 → 2Li3BN2 + NaBH4 + 8H2 and 2LiNH2 + LiBH4 → Li3BN2H8 → Li3BN2 + 4H2, where the intermediate phases Li3Na(NH2)4 and LiNH2 serve as the reagents to decompose LiBH4. The merged equations for the mechanochemical and the heating reactions below 400 °C can be denoted as 3LiBH4 + 2NaNH2 → Li3BN2 + 2NaBH4 + 4H2. The maximum dehydrogenation capacity in closed system below 400 °C is 5.1 wt.% H2, which agrees well with the theoretical capacity (5.5 wt.% H2) of the merged equation and thus demonstrates the suggested pathway. The subsequent step consists of the decompositions of NaBH4 and Li3Na(NH2)4 within the temperature range of 400 °C-600 °C. The apparent activation energies of the two steps are 114.8 and 123.5 kJ/mol, respectively. They are all lower than that of our previously obtained bulk LiBH4.  相似文献   

13.
The investigation of thermally induced dehydrogenation of LiBH4 reveals that LiBH4 doped with the graphene catalysts shows superior dehydrogenation and rehydrogenation performance to that of Vulcan XC-72, carbon nanotube and BP2000 doped LiBH4. For doping with 20 wt.% graphene, thermal dehydrogenation of LiBH4 is found to start at ca. 230 °C and a total weight loss of 11.4 wt.% can be obtained below 700 °C. With increased loading of graphene within a LiBH4 sample, the onset dehydrogenation temperature and the two main desorption peaks from LiBH4 are found to decrease while the hydrogen release amount is found to increase. Moreover, variation of the equilibrium pressure obtained from isotherms measured at 350–450 °C indicate the dehydrogenation enthalpy is reduced from 74 kJ mol−1 H2 for pure LiBH4 to ca. 40 kJ mol−1 H2 for 20 wt.% graphene doped LiBH4. Importantly, the reversible dehydrogenation/rehydrogenation process was achieved under 3 MPa H2 at 400 °C for 10 h, with a capacity of ca. 4.0 wt.% in the tenth cycle. Especially, LiBH4 is reformed and new species, Li2B10H10, is detected after the rehydrogenation process.  相似文献   

14.
In this work, the hydriding–dehydriding properties of the LiBH4–NbF5 mixtures were investigated. It was found that the dehydrogenation and reversibility properties of LiBH4 were significantly improved by NbF5. Temperature-programed dehydrogenation (TPD) showed that 5LiBH4–NbF5 sample started releasing hydrogen from as low as 60 °C, and 4 wt.% hydrogen could be obtained below 255 °C. Meanwhile, ∼7 wt.% H2 could be reached at 400 °C in 20LiBH4–NbF5 sample, whereas pristine LiBH4 only released ∼0.7 wt.% H2. In addition, reversibility measurement demonstrated that over 4.4 wt.% H2 could still be released even during the fifth dehydrogenation in 20LiBH4–NbF5 sample. The experimental results suggested that a new borohydride possibly formed during ball milling the LiBH4–NbF5 mixtures might be the source of the active effect of NbF5 on LiBH4.  相似文献   

15.
In this paper, we report a novel method of improving the reversible dehydrogenation properties of the 2LiBH4–MgH2 composite. Our study found that mechanically milling with small amount of Al powder can markedly shorten or even eliminate the problematic incubation period that interrupts the dehydrogenation steps of the 2LiBH4–MgH2 composite. But the resulting composite showed serious kinetics degradation upon cycling. In an effort to solve this problem, we found that combined usage of small amounts of Al and MgO enabled the 2LiBH4–MgH2 composite to rapidly and reversibly deliver around 9 wt% hydrogen at 400 °C under 0.3 MPa H2, which compares favorably with the dehydrogenation performance of the composites with transition-metal additives. A combination of phase/microstructural analyses and series of control experiments has been conducted to gain insight into the promoting effects of Al and MgO. It was found that Al and MgO additives act as precursor and promoter for the formation of AlB2 heterogeneous nucleation sites, respectively.  相似文献   

16.
The Mg(BH4)2-xLiH (0.1 ≤ x ≤ 0.8) composites which exhibit favorable dehydrogenation and encouraging reversibility are experimentally investigated. LiH additive reduces the onset temperature for dehydrogenation to 150 °C. And hydrogen release exceeds 10 wt.% from the new binary material below 250 °C. Furthermore, rehydrogenation results show that 3.6 wt.% hydrogen can still be recharged after twenty cycles at 180 °C. It should be emphasized that the long-term reversibility of borohydride under 200 °C is long overdue. TPD, PCT, and high-pressure DSC measurements are used to characterize the improvements in thermodynamic and kinetic ways. In addition, FT-IR and NMR studies indicate that the composite has a significant synergistic effect during (de)hydrogenation processes. This work suggests that controlled cation stoichiometry combined with doping by metal Li+ subvalent to Mg2+ facilitate the formation of polyborane intermediates [B3H8] and [B2H6]2−. They improve the dehydrogenation properties and make the material reversible under mild conditions.  相似文献   

17.
In the present study, the synthesis of two different LiBH4–Y(BH4)3 and LiBH4–YH3 composites was performed by mechanochemical processing of the 4LiBH4–YCl3 mixture and as-milled 4LiBH4–YCl3 plus 3LiH. It was found that Y(BH4)3 and YH3 formed in situ during milling are effective to promote LiBH4 destabilization but differ substantially from each other in terms of the dehydrogenation pathway. During LiBH4–Y(BH4)3 dehydriding, Y(BH4)3 decomposes first generating in situ freshly YH3 and subsequently, it destabilizes LiBH4 with the formation of minor amounts of YB4. About 20% of the theoretical hydrogen storage was obtained via the rehydriding of YB4–4LiH–3LiCl at 400 °C and 6.5 MPa. As a novel result, a compound containing (B12H12)2− group was identified during dehydriding of Y(BH4)3. In the case of 4LiBH4–YH3 dehydrogenation, the increase of the hydrogen back pressure favors the formation of crystalline YB4, whereas a reduction to ≤0.1 MPa induces the formation of minor amounts of Li2B12H12. Although for hydrogen pressures ≤0.1 MPa direct LiBH4 decomposition can occur, the main dehydriding pathway of 4LiBH4–YH3 composite yields YB4 and LiH. The nanostructured composite obtained by mechanochemical processing gives good hydrogen storage reversibility (about 80%) regardless of the hydrogen back pressure.  相似文献   

18.
In the present work we investigate the hydrogen sorption properties of composites in the MgH2–Ni, MgH2–Ni–LiH and MgH2–Ni–LiBH4 systems and analyze why Ni addition improve hydrogen sorption rates while LiBH4 enhance the hydrogen storage capacity. Although all composites with Ni addition showed significantly improved hydrogen storage kinetics compared with the pure MgH2, the fastest hydrogen sorption kinetics is obtained for Ni-doped MgH2. The formation of Mg2Ni/Mg2NiH4 in Ni-doped MgH2 composite and its microstructure allows to uptake 5.0 wt% of hydrogen in 25 s and to release it in 8 min at 275 °C. In the MgH2–Ni–LiBH4 composite, decomposition of LiBH4 occurs during the first dehydriding leading to the formation of diborane, which has a Ni catalyst poison effect via the formation of a passivating boron layer. A combination of FTIR, XRD and volumetric measurements demonstrate that the formation of MgNi3B2 in the MgH2–Ni–LiBH4 composite happens in the subsequent hydriding cycle from the reaction between Mg2Ni/Mg2NiH4 and B. Activation energy analysis demonstrates that the presence of Ni particles has a catalytic effect in MgH2–Ni and MgH2–Ni–LiH systems, but it is practically nullified by the addition of LiBH4. The beneficial role of LiBH4 on the hydrogen storage capacity of the MgH2–Ni–LiBH4 composite is discussed.  相似文献   

19.
The effect of lithium borohydride (LiBH4) on the hydriding/dehydriding kinetics and thermodynamics of magnesium hydride (MgH2) was investigated. It was found that LiBH4 played both positive and negative effects on the hydrogen sorption of MgH2. With 10 mol.% LiBH4 content, MgH2–10 mol.% LiBH4 had superior hydrogen absorption/desorption properties, which could absorb 6.8 wt.% H within 1300 s at 200 °C under 3 MPa H2 and completed desorption within 740 s at 350 °C. However, with the increasing amount of LiBH4, the hydrogenation/dehydrogenation kinetics deteriorated, and the starting desorption temperature increased and the hysteresis of the pressure-composition isotherm (PCI) became larger. Our results showed that the positive effect of LiBH4 was mainly attributed to the more uniform powder mixture with smaller particle size, while the negative effect of LiBH4 might be caused by the H–H exchange between LiBH4 and MgH2.  相似文献   

20.
In this work, the hydrogen storage properties of different molar ratio (in mole of 1:3 and 1:4) Na3AlH6LiBH4 system is investigated for the first time. X-ray diffraction and Fourier transform infrared results show that the Na3AlH6LiBH4 with molar ratio of 1:3 and 1:4 composite was transformed to Li3AlH6 and NaBH4 phases via a metathesis reaction during a ball-milling process for 6 h. Temperature-programmed-desorption (TPD) results show three stages of decomposition for the Na3AlH6LiBH4 (in mole ratio of 1:3 and 1:4) composite resulting from Li3AlH6 and NaBH4 phases. From the TPD graph, the Na3AlH6LiBH4 composite with molar ratio of 1:4 had showed better performance of hydrogenation properties compared to with molar ratio of 1:3. The composite began to release hydrogen at 180 °C in relation to decomposition of the Li3AlH6 stage into LiH and Al. The NaBH4 stage then began to decompose at approximately 380 °C, after reacting with Al to form an intermetallic phase, AlB2, which occurred at 100 °C lower than as-milled NaBH4. At 430 °C, the un-reacted NaBH4 was decomposed after catalysing with AlB2. Kissinger analysis shows the apparent activation energy of NaBH4 decomposition in the hydrides composite was reduced by about 75 kJ/mol compared to the as-milled NaBH4. The rehydrogenation process evidenced the reversibility of NaBH4. Based on these results, the intermetallic phase, AlB2, is considered to have played an important role by lowering the operating temperature and providing access to the full hydrogen content in the Na3AlH6LiBH4 composite system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号