首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 830 毫秒
1.
Dye-sensitized TiO2 solar cells were fabricated using tridentate ligand ruthenium(II) complexes, [Ru(dcbpy)(tptz)X]X (where dcbpy = 4,4′-dicarboxy-2,2′-bipyridine, tptz = 2,4,6-Tris(2-pyridyl)-s-triazine and X = Cl, SCN, CN) attached to sol–gel processed TiO2 electrodes. The ligand tptz functions as spectator ligand and dcbpy functions as the anchoring ligand with sufficient visible light absorption. The synthesized complexes were characterized before using them in solar cells. The functioning of the solar cells fabricated using different conducting glasses was monitored and the current–voltage characteristics were measured. The efficiencies of different cells were calculated and compared.  相似文献   

2.
A solid-state dye-sensitized solar cell comprising dye mixtures of [Ru(2,2-bpy-4,4′-dicarboxylic acid)(NCS)2] and [Ru(4,4′,4″-tricarboxy-2,2;6,2″-terpy)(NCS)3] on TiO2 thin film was fabricated. The different optical properties of dyes results in increased photocurrent and incident photon to photocurrent efficiency (IPCE). The multiple dye system showed the short circuit current (Isc) of 10.2 mA/cm2 and a cell efficiency (η) of 2.8 while broadening the spectral sensitivity of the cell. When a single dye is used, Isc of 6 and 5 mA/cm2 and cell efficiency of 1.7 and 1.2 were observed for [Ru(4,4-bis(carboxy)-bpy)2(NCS)2] (dye 1) and [Ru(2,2′,2″-(COOH)3-terpy)(NCS)3] (dye 2), respectively. Additionally, the resulting IPCE for the solar cell consisting of dye mixture was 50% at wide wavelength range from 530 to 650 nm while for the dye 1, 32% IPCE was observed at 535 nm while for the dye 2, highest IPCE value observed was 20% at 620 nm.  相似文献   

3.
Photochemically stable catalysts for continuous production of dihydrogen from water in the presence of visible light are yet to be developed. Most of the proposed systems suffer from loss of activity with use, at varying extent. In the present investigation, the photoactivity of Pt/TiO2 system in the visible region is improved by the addition of the sensitizer ([Ru(dcbpy)2(dpq)]2+) [where dcbpy=4,4′-dicarboxy 2,2′-bipyridine and dpq=2,3-bis-(2′-pyridyl)-quinoxaline] leading to efficient water reduction. This system is relatively inexpensive, reproducible, extremely stable and efficient in conversion of light into dihydrogen in aqueous solution. In order to obtain maximum information about the performance of TiO2–Pt catalysts, we varied the components and conditions of the system for water reduction. The dependence of the dihydrogen evolution rate on the amount of catalysts, concentration of the sensitizer and percentage of platinum on TiO2 has been studied. In addition to the above, a comparative study on the photocatalytic activities of Pt/TiO2 and Pt/ZnO in the presence of the above sensitizer for the production of hydrogen was also made.  相似文献   

4.
Mesoporous TiO2/AC, Pt/TiO2 and Pt/TiO2/AC (AC = activated carbon) nanocomposites were synthesized by functionalizing the activated carbon using acid treatment and sol–gel method. Photochemical deposition method was used for Pt loading. The nano-photocatalysts were characterized using XRD, SEM, DRS, BET, FTIR, XPS, CHN and ICP methods. The hydrogen production, under UV light irradiation in an aqueous suspension containing methanol has been studied. The effect of Pt, methanol and activated carbon were investigated. The results show that the activated carbon and Pt together improve the hydrogen production via water splitting. Also methanol acts as a good hole scavenger. Mesoporous Pt/TiO2/AC nanocomposite is the most efficient photocatalyst for hydrogen production compared to TiO2/AC, Pt/TiO2 and the commercial photocatalyst P25 under the same photoreaction conditions. Using Pt/TiO2/AC, the rate of hydrogen production is 7490 μmol (h g catal.)−1 that is about 75 times higher than that of the P25 photocatalyst.  相似文献   

5.
Two series of heteroleptic tris(bipyridyl)Ru(II) and bis(bipyridyl)(NCS)2Ru(II) complexes have been synthesized and characterized. This is a part of a new concept of covalent linkage of donor-antenna groups, e.g., triphenylamine or N,N′-bis(phenyl)-N,N′-bis(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine (TPD) to Ru(II) dye center. For the covalent attachment of donor units, a multi-step synthesis was carried out starting from 4,4′-dimethyl-2,2′-bipyridine followed by chlorination and Wittig reaction with donor aldehydes. This was followed either by a metallation reaction using bis(4,4′-dicarboxy-2,2′-bipyridyl)Ru(II)dichloride ((bpy(COOH)2Ru(II)2Cl2 2H2O) as precursor to get tris(bipyridyl) dyes or by a one pot synthesis starting from dichloro(p-cymene)Ru(II) dimer resulting in bis(bipyridyl)(NCS)2 dyes. The complexes (bpy(COOH)2)2(bpyMe2)Ru(II) 2PF6 and (bpy(COOH)2)(bpyMe2)(NCS)2Ru(II) without donor-antenna groups were also prepared to study and compare the properties. The influence of donor-antenna groups in these complexes was studied using UV–Vis spectroscopy and cyclic voltammetry. The heteroleptic complexes carrying donor groups show appreciably broad absorption ranges and extraordinarily high extinction coefficients. These high extinction coefficients are explained as due to the extended delocalization of π-electrons in the donor-antenna ligands. The HOMO/LUMO energy values obtained from cyclic voltammetry support the multi-step charge transfer cascade possible in these donor-antenna dyes. Examples of solid-state dye-sensitized solar cell utilizing these novel donor-antenna dyes revealed spectacular performances of power conversion efficiencies of up to 3.4%, for the dye carrying a TPD donor group as measured under AM 1.5 spectral conditions. This is attributed to highly efficient light harvesting of these novel dyes and the improved charge transfer dynamics at TiO2–dye and dye–hole conductor interfaces.  相似文献   

6.
A new heteroleptic Ru(II) complex of [Ru(Hcpip)(Hdcbpy)(NCS)2]·[N(C4H9)4]+·H2O {where Hcpip = 2-(4-(9H-carbazol-9-yl)phenyl)-1H-imidazo[4,5-f] [1,10]phenanthroline, Hdcbpy = 4-carboxylic acid-4′-carboxylate-2,2′-bipyridine} has been synthesized and demonstrated to function as an efficient sensitizer for nanocrystalline TiO2-based dye-sensitized solar cell (DSSC). The DSSC based on this Ru(II) complex showed a short-circuit photocurrent density of 19.2 mA cm−2, an open-circuit photovoltage of 630 mV, a fill factor of 57.7%, corresponding to an overall light to electricity conversion efficiency of 6.98% under simulated solar light irradiation at 100 mW cm−2. This efficiency value is 2.81- and 1.08-fold efficiency values of 2.48% and 6.47% observed for carbazole-free parent complex [Ru(Hpip)(Hdcbpy)(NCS)2]·[N(C4H9)4]+·H2O {where Hpip = 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline}- and cis-bis(isothiocyanato)bis(4,4′-dicarboxylic acid-2,2′-bipyridine)ruthenium(II) N3-based solar cells respectively, under identical experimental conditions. The molecular structures and electronic properties of the Ru(II) complexes were also investigated by means of density functional theory calculations in an effort to understand the device performance observed.  相似文献   

7.
A solid-state solar cell was fabricated by photoelectrochemical polymerization of pyrrole on porous nanocrystalline TiO2 electrode sensitized by the Grätzel dye, cis-di(thiocyanato)-N,N′-bis(2,2′-bipyridyl-4,4′-dicarboxylic acid)-ruthenium (II) dihydrate, [RuL2(NCS)2]), or a newly synthesized cis-Ru(dcb)2(pmp)2 (pmp=3-(pyrrole-1-ylmethyl)-pyridine). Polypyrrole successfully worked as a hole-transport layer with improvement of the cell characteristics when the TiO2 cell with cis-Ru(dcb)2(pmp)2 was compared with the similarly fabricated cells using [RuL2(NCS)2]. The improvement by using Ru(dcb)2(pmp)2 can be explained as due to direct molecular wiring of the polymer-chain to the excited metal center of the complex.  相似文献   

8.
We report the first example of a Ni(II) complex that demonstrates sensitiser function in a Dye-Sensitised Solar Cell (DSSC). Complexes [Ni(dcbpy)(qdt)] (1), [Ni(decbpy)(qdt)] (2) and [Ni(decbpy)Cl2] (3) (where dcbpy = 4,4′-dicarboxy-2,2′-bipyridine; decbpy = 4,4′-di(CO2Et)-2,2′-bipyridine; and qdt = quinoxaline-2,3-dithiolate) have been prepared. Characterisation was carried out using electrochemical, spectroscopic and computational techniques. Intensive visible transitions of 1 and 2 have been assigned predominantly to Ligand-to-Ligand Charge Transfer (LLCT) from the qdt to the diimine ligand, suggesting appropriate charge separation for application in a photoelectrochemical device. TiO2 sensitised with 2, following charge injection, processes a recombination time significantly long for photovoltaic function. In a DSSC, using redox electrolyte, photocurrents and photovoltages of 0.293 mA and 521 mV were observed, with optimum values requiring TiCl4 post-treatment of TiO2 and co-adsorption of Chenodeoxycholic acid (Cheno). Although photovoltaic function was observed, the low photocurrent is attributed to a short-lived excited state lifetime resulting in poor charge injection from the Ni(II) sensitiser.  相似文献   

9.
Photo-induced reforming of methanol, ethanol, glycerol and phenol at room temperature for hydrogen production was investigated with the use of ultra-small Pt nanoparticles (NPs) loaded on TiO2 nanotubes (NTs). The Pt NPs with diameters between 1.1 and 1.3 nm were deposited on TiO2 NTs by DC-magnetron sputtering (DC-MS) technique. The photocatalytic hydrogen rate achieved an optimum value for a loading of about 1 wt% of Pt. Apparent quantum yield for hydrogen generation was measured for methanol and ethanol water solutions reaching a maximum of 16% under irradiation with a wavelength of 313 nm in methanol/water solution (1/8 v/v). Pt NPs loaded on TiO2 NTs represented also a true water splitting catalyst under UV irradiation and pure distilled water. DC-MS method appears to be a technologically simple, ecologically benign and potentially low-cost process for production of an efficient photocatalyst loaded with ultra-small NPs with precise size control.  相似文献   

10.
A series of ruthenium complexes with and without TiO2 anchoring carboxylic acid groups have been synthesised and characterised using nuclear magnetic resonance (NMR), UV–vis and luminescence. These complexes were adsorbed on thin films of the wide band-gap semiconductor anatase and were tested as photosensitisers under standard conditions. I/V characteristics of such devices revealed superior performance of the non-symmetric complexes [4′-(4-bromophenyl)-[2,2′; 6′,2″] terpyridine]Ru(II) [4′-(4-bromophenyl)-[2,2′; 6′,2″] terpyridine-4,4″-dicarboxylic acid] and [2,2′; 6′,2″] terpyridine Ru(II) [2,2′; 6′,2″] terpyridine-4′-carboxylic acid with a maximum output power 0.016 mW cm−2 under illumination at 100 mW cm−2 AM1.5 and efficiencies 3 times higher than the symmetric complexes.  相似文献   

11.
The major challenge of the operation of every solar cell based on dye including water splitting solar cell (WSSC) and dye sensitized solar cell (DSSC) is the using organic solvent medium which causes to decompose the solar cell structure, resulting environmental impact. Here, we synthesized and characterized two new ruthenium complexes with nitrogen and oxygen donor ligands for DSSC application which show good stability on TiO2 surface in water solvent. Interestingly, the DSSC based on [Ru(dcbpy)2(DPC)]Cl, where dcbpy = 4,4-dicarboxilic acid 2,2-bipyridin and DPC = diphenylcarbazide, was shown better efficiency in water than methanol dye loading as well as N3 as a benchmark sensitizer in the same condition. The DPC-based exhibited open circuit voltage (Voc) of 0.63 V, short-circuit current density (Jsc) of 2.5 mA/cm2 and fill factor (FF) of 70%, resulting an overall power efficiency of 1.12%. The incident-photon-to-current conversion efficiency (IPCE) value is also reached to 45% for [Ru(dcbpy)2(DPC)]Cl in the same condition It is proposed that the ruthenium complex containing nitrogen and oxygen donor ligands is more stability on TiO2 and prevent the decomposition of TiO2 porous under water solvent condition.  相似文献   

12.
For photoelectric conversion, three of squarylium cyanine dyes were synthesized and their photoelectrochemical parameters were improved with increase in the adsorption ability of the dyes on nanocrystalline TiO2. A relatively high photoelectric conversion efficiency of 2.17% and the top incident photon-to-photocurrent conversion efficiency of 6.2% at 650 nm for the dye of highest adsorption ability among the three were obtained. Meanwhile, doping cis-Ru[4,4′-(LL)]2 (NCS)2 with 1% of the above-mentioned dye (molar ratio) as a photosensitizer, the photoelectrochemical solar cell made an efficient complement to light-harvesting capacity in almost the whole visible range with the photoelectric conversion efficiency increasing by 12% relative to that of pure cis-Ru[4,4′-(LL)]2 (NCS)2 (L=2,2′-bipyridyl-4,4′-dicarboxylate).  相似文献   

13.
The application of inverse titania opals in nanostructured solar cells   总被引:6,自引:0,他引:6  
The synthesis and characterization of nanostructured heterojunction solar cells based on inverse opal titanium dioxide (TiO2) films is discussed. Photonic films with thicknesses of 0.9 and 3.7 μm are deposited using self-organisation of latex spheres with diameters of 400 and 100 nm. The voids between the spheres are filled with a TiO2 precursor and a subsequent heat treatment yields a highly organized porous structure. Sensitization with Ru 535-dye (cis-[L2Ru(SCN)2] in which L is 2,2′-dipyridine-4,4′-dicarboxylic acid), yields solar cells with a power conversion efficiency of 0.6% under simulated solar light. At present, the small area of the ordered structure is limiting the performance of the cells. These cells may be promising for future applications, if improved fabrication techniques will enable an enlargement of the ordered area.  相似文献   

14.
Efficient Cu incorporated TiO2 (Cu–TiO2) photocatalysts for hydrogen generation were fabricated by four methods: in situ sol–gel, wet impregnation, chemical reduction of Cu salt, and in situ photo-deposition. All prepared samples are characterized by good dispersion of Cu components, and excellent light absorption ability. Depending on the preparation process, hydrogen generation rates of the as-prepared Cu–TiO2 were recorded in the range of 9–20 mmol h−1 gcatalyst−1, which were even more superior to some noble metal (Pt/Au) loaded TiO2. The various fabrication methods led to different chemical states of Cu, as well as different distribution ratio of Cu between surface and bulk phases of the photocatalyst. Both factors have been proven to influence photocatalytic hydrogen generation. In addition, the Cu content in the photocatalyst played a significant role in hydrogen generation. Among the four photocatalysts, the sample that was synthesized by in situ sol–gel method exhibited the highest stability. High efficiency, low cost, good stability are some of the merits that underline the promising potential of Cu–TiO2 in photocatalytic hydrogen generation.  相似文献   

15.
A novel photocatalyst was designed from the inspiration of natural forest's high efficient on light harvesting and energy conversion. This novel “forest-like” photocatalyst was successfully synthesized by a facile continuously-conducted three steps methods: electrospinning TiO2 nanofiber acts as the trunks, hydrothermal growth ZnO nanorods on the surface of TiO2 nanofiber acts as the branches, while photodeposition of Cu nanoparticles on the surface of TiO2 nanofiber and ZnO nanorods act as the leaves. This novel photocatalyst demonstrated higher photocatalytic hydrogen generation rate than most of semiconductor catalysts and many newly developed catalysts such as Pt/TiO2 catalyst and artificial leaves Pt/N–TiO2 catalyst in a water/methanol sacrificial reagent system under the light irradiation as a result of its enhanced light absorption ability, enlarged specific surface area promoting mass transfer and providing more reaction sites and its potential on anti-recombination of electrons and holes. Meanwhile, it is interesting to note that the photocatalytic hydrogen generation activity has a liner relationship with the hierarchy of materials, which means higher hierarchy materials display higher photocatalytic hydrogen generation activity. It is reasonable to believe that this natural mimic photocatalyst without noble metals will benefit the energy generation and novel materials development.  相似文献   

16.
Poly [2,2′-(m-pyrazolidene)-5,5′-bibenzimidazole] (PPBI) was synthesized from pyrazole-3,5-dicarboxylic acid and 3,3′,4,4′-tetraaminobiphenyle (TAB) through polycondensation reaction in polyphosphoric acid (PPA) as reaction solvent. And polymer-grafted SiO2 and TiO2 nanoparticles were prepared through radical polymerization of 1-vinylimidazole and sulfonated vinylbenzene on the surface-vinylated nanoparticles. The polymer-grafted SiO2 and TiO2 nanoparticles were utilized as a functional additive to prepare PPBI/polymer-grafted SiO2 and TiO2 nanocomposite membranes. Imidazole and sulfonated vinylbenzene groups on the surface of modified nanoparticles forming linkages with PPBI chains, improved the compatibility between PPBI and nanoparticles, and enhanced the mechanical strength of the prepared nanocomposite membranes. The prepared nanocomposite membranes showed higher water uptake and acid doping levels comparing to PPBI. Also, after acid doping with phosphoric acid, nanocomposite membranes exhibited enhanced proton conductivity in comparison to the pristine PPBI and PPBI/un-modified SiO2 and TiO2 nanocomposite membranes. The enhancement in proton conductivity of nanocomposite membranes resulted from modified SiO2 nanoparticles showed higher conductivity than modified TiO2 nanoparticles. The above results indicated that the PPBI/modified SiO2 and TiO2 nanocomposite membranes could be utilized as proton exchange membranes for medium temperature fuel cells.  相似文献   

17.
A photoelectrochemical (PEC) cell with an innovative design for hydrogen generation via photoelectrocatalytic water splitting is proposed and investigated. It consisted of a TiO2 nanotube photoanode, a Pt/C cathode and a commercial asbestos diaphragm. The PEC could generate hydrogen under ultraviolet (UV) light-excitation with applied bias in KOH solution. The Ti mesh was used as the substrate to synthesize the self-organized TiO2 nanotubular array layers. The effect of the morphology of the nanotubular array layers on the photovoltaic performances was investigated. When TiO2 photocatalyst was irradiated with UV-excitation, it prompted the water splitting under applied bias (0.6 V vs. Normal Hydrogen Electrode, NHE.). Photocurrent generation of 0.58 mA/cm2 under UV-light irradiation showed good performance on hydrogen production.  相似文献   

18.
H2 production over dye-sensitized Pt/TiO2 nanoparticles with mesostructures (m-TiO2) under visible light (λ > 420 nm) was investigated by using methanol as electron donors. Experimental results indicate that three types of ruthenium(II) bipyridyl complex dyes (one binuclear Ru, two mononuclear Ru), which can be attached to Pt/m-TiO2 with different linkage modes, show different photosensitization effects due to their different coordination circumstances and physicochemical properties. The dye tightly linked with m-TiO2 has better durability but the lowest H2 evolution efficiency, whereas the loosely attached dyes possess higher H2 evolution efficiency and preferable durability. It seems that the dynamic equilibrium between the linkage of the ground state dye with TiO2 and the divorce of the oxidization state dye from the surfaces plays a crucial role in the photochemical behavior during the photocatalyst sensitization process. It is helpful to improve the H2 evolution efficiency by enhancing the electron injection and hindering the backward transfer. The binuclear Ru(II) dye shows a better photosensitization in comparison with mononuclear Ru(II) dyes due to its large molecular area, conjugation system, and “antenna effect”, which, in turn, improve the visible light harvesting and electron transfer between the dye molecules and TiO2.  相似文献   

19.
Photo-assisted hydrogen generation studies of platinum loaded titanium (IV) oxide nanotubes suspended in ethanol–water mixture were carried out at room temperature. The TiO2 nanotubes synthesized by rapid breakdown anodization technique were loaded with Pt nanoparticles by chemical reduction of aqueous chloroplatinic acid solution using sodium borohydride. The chemisorption (active) surface area of the synthesized nanocomposites for hydrogen was measured by pulse chemisorption method using temperature programmed desorption reduction oxidation equipment and found to decrease with increase in platinum loading in the range 1–10 wt%. The platinum supported nanotube composites were characterized for phase and morphology by XRD, TEM and SEM. The hydrogen generated by the photocatalytic reduction of water from water–ethanol mixture at different wavelengths of incident light, using the Pt-TiO2 nanocomposite photocatalyst, was determined by using a proton exchange membrane based hydrogen meter. The highest hydrogen generation efficiency was observed at 1–2.5 wt% of Pt loading. The maximum photocatalytic hydrogen generation of 0.03 mol/h/g of Pt-TiO2 was observed with a 64 W UV light source (λ = 254 nm). The photoluminescence property of the Pt loaded TiO2 has been correlated with the hydrogen generation efficiency and the reaction mechanism briefly discussed.  相似文献   

20.
The development of TiO2 photoelectrochemical cells is largely dependent on the elaboration of efficient dyes molecules to sensitize the nanocrystalline titania surfaces. In the present work, a new system functioning on this basis is proposed: an Ru(II) complex bearing two triphenylphosphine (PPh3) and one 2,2′-bipyridyl-4,4′-dicarboxylate (dcbipy) chromophoric ligands, deposited on TiO2 prepared through a simple sol–gel process is tested in a wet regenerative photoelectrochemical cell. The grafting of the complex on TiO2 surface is characterized using Raman spectroscopy. The measurement of the full-width at half-maximum (FWHM) of the TiO2 lower frequency Eg Raman line allowed to compare the crystallite sizes of the sol–gel films (13–14 nm) with those of nanocrystalline anatase films (7–8 nm). Very intense Raman bands were observed (ex situ and in situ) for the Ru(PPh3)2(dcbipy)Cl2 complex chemisorbed on TiO2. The most important vibrations were unambiguously assigned to the PPh3 or to dcbipy ligands. Altering the potential applied to the electrode for a given laser excitation energy can selectively enhance the vibrational modes of PPh3. A reversible shift of the dcbipy Raman lines was also observed. The electronic absorption spectrum and the electrochemical data are taken into account in order to explain the obtained results for the chemisorbed dye on both nanocrystalline and sol–gel films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号