首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents new results on the dynamic synthesis and decomposition of ternary Mg2FeH6. A novel synthesis method was applied for the rapid and effective synthesis of a ternary Mg–Fe hydride. This method consists of two processing routes. The first route involves high-energy ball milling of the initial MgH2–Fe powder mixture, while the second is composed of a unique pressurizing and heating cycle route to obtain a full phase transformation within half an hour. The structural investigations carried out by X-ray diffraction revealed that almost all of the initial powder mixture transforms into the ternary hydride. Furthermore, the sample, which was synthesized, was also decomposed and reloaded with hydrogen. The formation of Mg2FeH6 consists of two steps that involve MgH2 as an intermediate compound. In contrast, the decomposition of Mg2FeH6 consists of only one step and does not follow the inverse route. Some traces of iron were found in the reaction products. TDP results show that a desorption peak occurs at 315 °C, and this is in good agreement with DSC measurements showing only a single endothermic peak around 340 °C. Microstructural examinations revealed that the synthesized Mg2FeH6 powder generally exhibits a duplex structure that consists of plate-like particles larger than 1 μm in diameter and spherical particles smaller than 50 nm that show a tendency to agglomerate and form larger particles exhibiting a sponge-like structure. The formation of Mg2FeH6 takes place at the phase boundary between Fe seeds and the growing hydride phase. In contrast, the decomposition of the Mg2FeH6 phase takes place with the formation of the separate nanosized Mg and Fe phases. The dehydrogenated powder sample shows oval Fe precipitates of 10–100 nm in size that are embedded in the Mg-based matrix.  相似文献   

2.
A ternary Mg2CoH5 hydride was synthesized using a novel method that relies on a relatively short mechanical milling time (1 h) of a 2:1 MgH2-Co powder mixture followed by sintering at a sufficiently high hydrogen pressure (>85 bar) and heating from RT to 500 °C. The ternary hydride forms in less than 2.5 h (including the milling time) with a yield of ∼90% at ∼300 °C. The mechanisms of formation and decomposition of ternary Mg2CoH5 were studied in detail using an in situ synchrotron radiation powder X-ray diffraction (SR-PXD). The obtained experimental results are supported by morphological and microstructural investigations performed using SEM and high-resolution STEM. Additionally, thermal effects occurring during the desorption reaction were studied using DSC. The morphology of as-prepared ternary Mg2CoH5 is characterized by the presence of porous particles with various shapes and sizes, which, in fact, are a type of nanocomposite consisting mainly of nanocrystallites with a size of ∼5 nm. Mg2CoH5 decomposes at approximately 300 °C to elemental Mg and Co. Additionally, at approximately 400 °C, MgCo is formed as precipitates inserted into the Mg-Co matrix. During the rehydrogenation of the decomposed residues, prior to the formation of Mg2CoH5, MgH2 appears, which confirms its key role in the synthesis of the ternary Mg2CoH5.  相似文献   

3.
We have designed a new synthesis method for the ternary metal hydride Mg2FeH6 based on the direct reaction of simple hydrides under high-pressure conditions. Well-crystallized samples were prepared in a piston-cylinder hydrostatic press at 2 GPa and temperatures around 750 °C from mixtures of MgH2 and Fe enclosed in gold or platinum capsules. Seven different samples have been prepared under different conditions. X-ray powder diffraction analysis was used to identify and assess the purity of the samples, through Rietveld analyses of the crystal structure (K2PtCl6-type). Mg2FeH6 shows a cubic symmetry with space group Fm-3m. SEM images show an average particle size of 1–2 μm for Mg2FeH6; the microcrystals present well-grown faces and display a high homogeneity of shapes and sizes. Thermogravimetric analysis has been carried out to determine not only the hydrogen desorption temperature but also the hydrogen contents.  相似文献   

4.
The hydrogen storage properties of 5LiBH4 + Mg2FeH6 reactive hydride composites for reversible hydrogen storage were investigated by comparing with the 2LiBH4 + MgH2 composite in the present work. The dehydrogenation pathway and reaction mechanism of 5LiBH4 + Mg2FeH6 composite were also investigated and elucidated. The self-decomposition of Mg2FeH6 leads to the in situ formation of Mg and Fe particles on the surface of LiBH4, resulting in a well dispersion between different reacting phases. The formation of FeB is observed during the dehydrogenation of 5LiBH4 + Mg2FeH6 composite, which might supplies nucleation sites of MgB2 during the dehydrogenation process, but is not an ascendant catalyst for the self-decomposition of LiBH4. And FeB can also transform to the LiBH4 and Fe by reacting with LiH and H2 during the rehydrogenation process. The dehydrogenation capacity for 5LiBH4 + Mg2FeH6 composite still gets to 6.5 wt% even after four cycles. The X-ray diffraction analyses reveal the phase transitions during the hydriding and dehydriding cycle. The formed FeB in the composite maintains a nanostructure after four hydriding-dehydriding cycles. The loss of hydrogen storage capacity and de-/rehydrogenation kinetics can be attributed to the incomplete generation of Mg2FeH6 during the rehydrogenation process.  相似文献   

5.
A ternary Mg2NiH4 hydride was synthesized using method that relies on a relatively short mechanical milling time (one hour) of a 2:1 MgH2–Ni powder mixture followed by sintering at a sufficiently high hydrogen pressure (>85 bar) and temperature (>400 °C). The ternary hydride forms in less than 2.5 h (including the milling time) with a yield of ∼90% as a mixture of two polymorphic forms. The mechanisms of formation and decomposition of ternary Mg2NiH4 under different hydrogen pressures were studied in detail using an in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and high pressure DSC. The obtained experimental results are supported by morphological and microstructural investigations performed using SEM and high resolution STEM. Additionally, effects occurring during the desorption reaction were studied using DSC coupled with mass spectrometry.  相似文献   

6.
Synthesis and decomposition mechanisms of ternary Mg2FeH6 were investigated using in-situ synchrotron radiation powder X-ray diffraction (SR-PXD) and high-pressure differential scanning calorimetry (HP-DSC). Two routes for synthesis of Mg2FeH6 were studied. The first utilizes a ball-milled homogeneous MgH2–Fe powder mixture and the second uses a mixture of Fe and Mg formed by decomposition of the ternary hydride, Mg2FeH6. In both cases the reaction mixture was sintered in a temperature range from RT to 500 °C under a hydrogen pressure of 100–120 bar. The reaction mechanisms were established using in-situ SR-PXD. The formation of Mg2FeH6 consists of two steps with MgH2 as an intermediate compound, and the presence of magnesium was not observed. In contrast, the decomposition of Mg2FeH6 was found to be a single-step reaction. Additionally, both reactions were investigated using HP-DSC under similar conditions as in the SR-PXD experiments in order to estimate reaction enthalpies and temperatures. Mg2FeH6 was found to form from MgH2 and Fe under hydrogen pressure regardless of whether the MgH2 was introduced in the mixture or formed prior to creation of the ternary hydride.  相似文献   

7.
The hydrogen sorption behavior of the Mg2FeH6–MgH2 hydride system is investigated via in-situ synchrotron and laboratory powder X-ray diffraction (SR-PXD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), particle size distribution (PSD) and volumetric techniques. The Mg2FeH6–MgH2 hydride system is obtained by mechanical milling in argon atmosphere followed by sintering at high temperature and hydrogen pressure. In-situ SR-PXD results show that upon hydriding MgH2 is a precursor for Mg2FeH6 formation and remained as hydrided phase in the obtained material. Diffusion constraints preclude the further formation of Mg2FeH6. Upon dehydriding, our results suggest that MgH2 and Mg2FeH6 decompose independently in a narrow temperature range between 275 and 300 °C. Moreover, the decomposition behavior of both hydrides in the Mg2FeH6–MgH2 hydride mixture is influenced by each other via dual synergetic-destabilizing effects. The final hydriding/dehydriding products and therefore the kinetic behavior of the Mg2FeH6–MgH2 hydride system exhibits a strong dependence on the temperature and pressure conditions.  相似文献   

8.
Mg2NiH4, with fast sorption kinetics, is considered to be a promising hydrogen storage material. However, its hydrogen desorption enthalpy is too high for practical applications. In this paper, first-principles calculations based on density functional theory (DFT) were performed to systematically study the effects of Al doping on dehydrogenation properties of Mg2NiH4, and the underlying dehydrogenation mechanism was investigated. The energetic calculations reveal that partial component substitution of Mg by Al results in a stabilization of the alloy Mg2Ni and a destabilization of the hydride Mg2NiH4, which significantly alters the hydrogen desorption enthalpy ΔHdes for the reaction Mg2NiH4 → Mg2Ni + 2H2. A desirable enthalpy value of ∼0.4 eV/H2 for application can be obtained for a doping level of x ≥ 0.35 in Mg2−xAlxNi alloy. The stability calculations by considering possible decompositions indicate that the Al-doped Mg2Ni and Mg2NiH4 exhibit thermodynamically unstable with respect to phase segregation, which explains well the experimental results that these doped materials are multiphase systems. The dehydrogenation reaction of Al-doped Mg2NiH4 is energetically favorable to perform from a metastable hydrogenated state to a multiphase dehydrogenated state composed of Mg2Ni and Mg3AlNi2 as well as NiAl intermetallics. Further analysis of density of states (DOS) suggests the improving of dehydrogenation properties of Al-doped Mg2NiH4 can be attributed to the weakened Mg-Ni and Ni-H interactions and the decreasing bonding electrons number below Fermi level. The mechanistic understanding gained from this study can be applied to the selection and optimization of dopants for designing better hydrogen storage materials.  相似文献   

9.
The structures and properties of hydrogen storage alloy Mg2Ni, of aluminum and silver substituted alloys Mg2−xMxNi (M = Al and Ag, x = 0.16667), and of their hydrides Mg2NiH4, Mg2−xMxNiH4 (M = Al and Ag, x = 0.125) have been calculated from first-principles. Results show that the primitive cell sizes of the intermetallic alloys and hydrides were reduced by substitution of Mg with Al or Ag. Also, the interaction of Ni–Ni was weakened by the substitution. A strong covalent interaction between H and Ni atoms forms tetrahedral NiH4 units in Mg2NiH4. The NiH4 unit near the Al/Ag atom became tripod-like NiH3 in Mg2−xMxNiH4 (M = Al, Ag), indicating that the hydrogen storage capacity was decreased by the substitution. The calculated enthalpies of hydrogenation for Mg2Ni, Mg2−xAlxNi and Mg2−xAgxNi are −65.14, −51.56 and −53.63 kJ/mol H2, respectively, implying that the substitution destabilizes the hydrides. Therefore, the substitution is an effective technique for improving the thermodynamic behavior of hydrogenation/dehydrogenation in magnesium-based hydrogen storage materials.  相似文献   

10.
Two composite hydrogen storage materials based on Mg2FeH6 were investigated for the first time. The Mg2FeH6–LiBH4 composite of molar ratio 1:5 showed a hydrogen desorption capacity of 5.6 wt.% at 370 °C, and could be rehydrogenated to 3.6 wt.% with the formation of MgH2, as the material was heated to 445 °C and held at this temperature. The Mg2FeH6–LiNH2 composite of 3:10 molar ratio exhibited a hydrogen desorption capacity of 4.3 wt.% and released hydrogen at 100 °C lower then the Mg2FeH6–LiBH4 composite, but this mixture could not be rehydrogenated. Compared to neat Mg2FeH6, both composites show enhanced hydrogen storage properties in terms of desorption kinetics and capacity at these low temperatures. In particular, Mg2FeH6–LiNH2 exhibits a much lower desorption temperature than neat Mg2FeH6, but only Mg2FeH6–LiBH4 re-absorbs hydrogen.  相似文献   

11.
Mg2FeH6 was synthesized by ball milling MgH2 and Fe (2:1 molar ratio) mixture for 72 h followed by heating at 400 °C under H2 pressure. The hydride formation, its structure and homogeneity were investigated by scanning electron microscopy, X-ray diffraction, transmission electron microscopy and Raman spectroscopy. High pressure in situ synchrotron X-ray diffraction and Vienna ab initio simulation were used to determine bulk modulus of the sample. The bulk modulus of Mg2FeH6 was found to be 75.4(4) GPa by optimized experiment and 76.3 GPa by theoretical simulation. From high temperature in situ X-ray diffraction study the volumetric thermal expansion coefficient of Mg2FeH6 was found to be αv = 5.85(3) × 10−5 + 7.47(7) × 10−8 (T − To)/°C. Decomposition of Mg2FeH6 was observed at 425 °C and the decomposition products were Mg, Fe and H2.  相似文献   

12.
13.
The solid solutions of Mg2Ni1?xMx (when M = V, Cr, Fe, Co, Cu and Zn) have a Mg2Ni-type structure with a large homogeneity range. A comparative study of the action of hydrogen has been carried out on all alloys corresponding to an x = 0.25 formulation. The absorption-desorption process of hydrogen is reversible and after dissociation of the hydride the starting material is regenerated except for copper which has not been examined here. Hydriding leads for all other alloys to formation of quaternary hydrides. The thermal stability is very close to that of Mg2NiH4 stability: partial substitution of nickel by cobalt in Mg2Ni leads at given temperature to a lower dehydriding rate.  相似文献   

14.
Mg3MNi2 (M = Al, Ti, Mn) ternary intermetallic compounds with cubic structure are a new type of potential hydrogen storage alloys. Using ab initio density functional theory (DFT) calculations, the energetics and electronic structures of Mg3MNi2 (M = Al, Ti, Mn) compounds are systematically investigated. The optimized structural parameters including lattice constants and internal atomic positions are close to experimental data determined from X-ray powder diffraction. The calculated results of formation enthalpy ΔHform show that the stabilities of cubic Mg3MNi2 (M = Al, Ti, Mn) compound, compared with hexagonal Mg2Ni, increase in the order of Mg3MnNi2, Mg2Ni, Mg3TiNi2 and Mg3AlNi2, whereas the stabilities of their saturated Mg3MNi2H3 (M = Al, Ti, Mn) hydrides, compared with monoclinic Mg2NiH4, decrease in the order of Mg2NiH4, Mg3AlNi2H3, Mg3TiNi2H3 and Mg3MnNi2H3. Further calculations of hydrogen desorption enthalpy ΔHdes indicate that these cubic Mg3MNi2 (M = Al, Ti, Mn) compounds possess promising dehydrogenation properties for their relatively lower ΔHdes values. Among of them, the dehydrogenation ability of Mg3TiNi2 is the most pronounced. Analysis of electronic structures suggests that the strong covalent bonding interactions between Ni and M within cubic Mg3MNi2 (M = Al, Ti, Mn) are dominant and directly control the structural stabilities of these compounds.  相似文献   

15.
The Mg2NiH4 complex hydrides were synthesized by high-energy ball milling (HEBM) MgH2 + Ni mixtures. Multi-walled carbon nanotubes (MWCNTs) or TiF3 as catalysts were added and the catalytic-dehydrogenation behaviors were investigated. All prepared samples are characterized by X-ray diffraction (XRD) spectroscopy, scanning electron microscope (SEM) and differential scanning calorimetry (DSC) to acquire information of microstructure, phase compositions, surface and dehydrogenation properties. The results indicate that the method of adding catalysts by HEBM is reasonable and the hydrogen desorption property of Mg2NiH4 is improved by catalysts. It is worth noting that the dehydrogenation temperature (TD) and the activation energy (Ea) of Mg2NiH4 catalyzed by MWCNTs coupling with TiF3 are reduced to 230 °C (243.6 °C of Mg2NiH4) and 53.24 kJ/mol (90.13 kJ/mol of Mg2NiH4), respectively. The addition of proper catalysts is proved to be an effective strategy to decrease TD and Ea of Mg2NiH4 hydrides.  相似文献   

16.
17.
Complex ternary hydrides based in Mg and transition metals are very attractive materials for hydrogen and energy storage due to their large volumetric capacity, up to 150 kgH2/m3 in Mg2FeH6 and their high dissociation enthalpies. These compounds may be produced at room temperature by mechanical milling of the constituents in H2 atmosphere. This technique has also served to explore the synthesis of quaternary hydrides Mg2T1−zT’zHy, combining two transition metals to optimize the properties of the resulting hydride. In the present work we analyze the mechanical synthesis of the compounds Mg2Fe1−zCozHy (z = 0, ¼, ½, ¾, 1) by mechanical alloying at room temperature Mg-Fe-Co powder mixtures in adequate proportion, at 0.3 MPa H2. We follow the mechanosynthesis process trough the analysis of the hydrogen absorption kinetic curves. Samples obtained after a steady state was reached were characterized by X ray diffraction and Mössbauer spectroscopy. The different stages in the mechanosynthesis of these complex hydrides are discussed in terms of the composition and initial state of the powder mixture.  相似文献   

18.
The structure, kinetics and electrochemical characteristics of Mg2NiH4-x wt.% MmNi3.8Co0.75Mn0.4Al0.2 (x = 5, 10, 20, 40) composites prepared by mechanical milling have been investigated in this paper. XRD results indicate that the as-milled Mg2NiH4 shows nanocrystalline or amorphous-like structure, and it does not react with MmNi3.8Co0.75Mn0.4Al0.2 during mechanical milling. As the amount of MmNi3.8Co0.75Mn0.4Al0.2 increases, the maximum discharge capacity decreases initially from 508 mAh/g (x = 5) to 440 mAh/g (x = 10) and then increases to 509 mAh/g (x = 40). Meanwhile, the capacity retention (R10) increases from 12.8% (x = 5) to 23.4% (x = 40), and the corrosion potential of electrode (Ecorr) increases from −0.930 V to −0.884 V (vs. Hg/HgO). Especially, the more MmNi3.8Co0.75Mn0.4Al0.2 content the composite contains, the higher high rate dischargeability (HRD) the electrode exhibits, which could be attributed to the catalytic reaction and reduction of the Mg2NiH4 grain size brought by MmNi3.8Co0.75Mn0.4Al0.2. The improvement in electrode kinetics has been depicted from the bulk hydrogen diffusion coefficient (D), the exchange current density (I0) and the charge transfer resistance (Rct) on the alloy surface.  相似文献   

19.
Light-weight metal hydrides are potential high-capacity conversion anode materials for lithium-ion batteries, but the poor reaction reversibility and cyclic stability of hydride anodes need to be improved. In this work, the ternary hydride Mg2FeH6 was composited with the graphite (G) by ball-milling, and the Mg2FeH6-G composite electrode was further coated with amorphous TiO2 film by magnetron sputtering. The resultant Mg2FeH6-G/TiO2 electrode exhibited a stable charge capacity of 412 mAh g?1 over 100 cycles, which is much higher than 46 mAh g?1 at 20th cycle for the pure Mg2FeH6 electrode, or 185 mAh g?1 at 100th cycle for the Mg2FeH6-G electrode. There is only little capacity degradation after 20 cycles for the Mg2FeH6-G/TiO2 electrode and the charge capacity retention is 84.7% after 100 cycles. The remarkable improvement in the cyclic stability of Mg2FeH6-G/TiO2 electrode is mainly attributed to the dense TiO2 coating that maintains the structural integrity of electrode during cycling. The TiO2 coating also prevents the direct contact of high active LiH/MgH2 with the liquid electrolyte, and thus ensures the high reversibility of conversion reaction of MgH2 during cycling.  相似文献   

20.
Dimagnesium iron hydride was synthesized by mechanical milling of a MgH2/Fe mixture followed by sintering under a high hydrogen pressure (120 bar). The influence of the milling time on the synthesis yield was observed. Properly chosen processing parameters led to a 94–97 % reaction yield (depending on the measurement method) for the formation of Mg2FeH6. Milling times that were too short or too long proved to be ineffective. A custom-made reactor for synthesis of a batch of up to 20 g is presented. Synthesized samples were characterized by XRD analysis and PCT measurements were performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号