首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tungsten carbide (WC) has been previously identified as both an electrocatalyst and a support for several types of electrochemical reactions. The synthesis of WC often leads to excess surface carbon that can greatly affect its electrocatalytic activity. This work will evaluate the effect of surface carbon on WC both as a catalyst and as a support for monolayer (ML) amounts of platinum (Pt). WC thin films with no surface carbon, along with those with 1, 2, 3, or 4 equivalent ML of surface carbon, were synthesized. The hydrogen evolution reaction (HER) activity was used as a probe to test the effect of surface carbon on the electrochemical activity of WC and 1 ML Pt on WC (Pt/WC) using linear sweep voltammogram (LSV) in 0.5 M sulfuric acid. The HER activity of WC was relatively unaffected for very small amounts of surface carbon but decreased when several MLs or more of surface carbon was present. Pt/WC without surface carbon was found to have slightly higher HER activity as compared to Pt deposited on WC with surface carbon.  相似文献   

2.
WC was investigated as an electrocatalyst support material for a monolayer-equivalent of Pt and the Pt/WC system was evaluated as an electrocatalyst for the HER and HOR and compared to commercial Pt/C. It was found that Pt/WC lost only 4% of its activity during aging, which was significantly better than Pt/C, which lost more than 20% of its activity under identical operating conditions. Most of the degradation of the Pt/WC performance was due to the decomposition of impurity WOx species on the support surface from synthesis that was identified by XPS. The activity and mechanism for the HER and HOR were also quantitatively evaluated. It was found that the reaction kinetics for the HER and HOR in both catalyst systems, Pt/WC and Pt/C, were identical, proceeding through the Volmer–Heyrovsky mechanism with an apparent activation energy of approximately 35 kJ/mol.  相似文献   

3.
Interfacial hydrophobic/hydrophilic reaction fields significantly affect various reactions at the electrode surface. The hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR) have been investigated on single crystal Pt electrodes modified with hydrophobic/hydrophilic cations and anion-exchange copolymers in alkaline solutions. In alkali metal hydroxide solutions, Pt (110) exhibits the highest HER/HOR activity in the low-index planes of Pt. On the low-index planes of Pt, the hydrophilicity of the alkali metal cation in the supporting electrolyte activates the HER/HOR depending on its hydration energy. Hydrophilic cations at the interface facilitate the extraction of hydrogen from the hydrated water. The modification of anion-exchange copolymers with a hydrophobic skeleton on Pt (110) further enhanced the HER/HOR activity. The hydrogen bonding network formed around the hydrophobic species facilitated the mobility of water molecules and the OH as the reactant/product of the HER/HOR. Appropriately forming hydrophilic and hydrophobic reaction fields at the interface improved the HER/HOR activity.  相似文献   

4.
In this work WC-supported metal monolayers (Cu, Ru, Rh, Pd, Ag, Ir, Pt and Au) are investigated using Density Functional Theory in order to establish general trends regarding monolayer stability, electronic structure and reactivity. Using calculated hydrogen–metal bond energies and available data on the exchange current densities (j0) for hydrogen evolution reaction (HER) volcano-type curve is obtained enabling prediction of HER j0 for the entire series of MML/WC systems not considered so far as HER electrocatalysts. Among investigated surfaces, CuML/WC(0001) and RhML/WC(0001) are identified as promising HER electrocatalysts with (i) HER exchange current density matching the one of Pt and (ii) stability in electrochemical environment under HER conditions. Provided results point to a general conclusion that Pt might not be necessary for efficient catalysis of hydrogen electrode reactions – superior catalysts can be obtained by rational design approach with suitable choice of overlayer/support system not involving Pt at all.  相似文献   

5.
Developing non-precious metal catalysts for oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) is crucial for proton exchange membrane fuel cell (PEMFC), metal-air batteries and water splitting. Here, we report a in-situ simple approach to synthesize ultra-small sized transition metal carbides (TMCs) nanoparticles coupled with nitrogen-doped carbon hybrids (TMCs/NC, including WC/NC, V8C7/NC and Mo2C/NC). The TMCs/NC exhibit excellent ORR and HER performances in acidic electrolyte as bi-functional catalysts. The potential of WC/NC at the current density of 3.0 mA cm?2 for ORR is 0.814 V (vs. reversible hydrogen electrode (RHE)), which is very close to Pt/C (0.827 V), making it one of the best TMCs based ORR catalysts in acidic electrolyte. Besides, the TMCs/NC exhibit excellent performances toward HER, the Mo2C/NC only need an overpotential of 80 mV to drive the current density of 10 mA cm?2, which is very close to Pt/C (37 mV), making it the competitive alternative candidate among the reported non-precious metal HER catalysts.  相似文献   

6.
7.
Studying the hydrogen evolution reaction (HER) catalyst is important for the global energy crisis. Clusters have many special characteristics due to quantum size effect and super high specific surface area, including optical performance, catalytic performance, etc. In this work, the structures of transition metal cluster TMn (TM = Co, Ni, Cu, Pd, Pt, n = 4–10) were searched and optimized by quantum chemistry methods. To search for non-precious metal catalysts, we calculated the Gibbs free energies for HER process on different clusters. Furthermore, the electronic structures of clusters before and after the reaction with H were analyzed, including the molecular surface electron distribution, the frontier molecular orbital, and the charge transfer properties, which dominated the HER processes. The results show that the Cu clusters have excellent HER catalytic properties due to its suitable surface electron distribution and HOMO/LUMO levels, especially Cu4, Cu7 and Cu9, which even comparable to Pt catalysts. These results can help us better understand the mechanism of clusters catalyze HER process.  相似文献   

8.
The hydrogen adsorption properties on a Pt covered Fe-terminated B2-FeTi (111) surface are studied using the Density Functional Theory (DFT). The calculations are employed to trace relevant orbital interactions and to discuss the geometric and electronic consequences of incorporating one Pt atom or a Pt monolayer on top of the FeTi surface. The most stable adsorption site is a distorted FCC hollow for one Pt atom and from this location we build the Pt monolayer (ML). The H-adsorption energy is very close among BRIDGE, HCP and FCC hollow sites (∼−0.45 eV) being lower for the TOP site (−0.34 eV) in the case of a Pt(111) fcc surface. In the case of a Pt ML/FeTi, the H more stabilized on a BRIDGE site (∼−1.13 eV) interacting with both a Pt and Fe atom. We also computed the density of states (DOS) and the overlap population density of states (OPDOS) in order to study the evolution of the chemical bonding after adsorption.  相似文献   

9.
Herein, a new direct synthesis route leading to a mesoporous NiWO4 with crystalline framework and NiWO4 - graphene nanoplatelets (GNP) composite is reported. Ni and W assembled into a mesoporous tungstate type of symmetry by co-precipitation synthesis route and its composite with GNP were used as supports for electrocatalysts, with reduced Pt content (8 wt.%), in oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) in acidic medium. A comprehensive assessment of the modifications related to the crystalline and porous structures, morphological aspects as well as the surface chemistry aiming to explain the electrochemical properties was performed. It was found that the presence of GNP during the synthesis process leads, mainly, to the enhanced growth of NiWO4 nanocrystallites, as well as induces changes in the surface chemistry. The electrochemical results show that the introduction of GNPs into the NiWO4 composite support leads to a significant improvement in the activity of the Pt electrocatalyst in ORR and HOR compared to both initial NiWO4 and Pt/NiWO4 samples, as well as mechanical mixtures of these catalysts with carbon. Mass activity for hydrogen oxidation, determined in a mixed kinetic-diffusion controlled region, obtained on the 8 wt.% Pt/NiWO4-GNP catalyst was significantly higher compared to the commercial 20 wt.% Pt/C Quintech catalyst. Our comprehensive structural and surface chemistry assessments indicate this composite material as a viable electrocatalyst for PEMFCs using a broader type of fuels.  相似文献   

10.
The present article investigates the tolerant effect exerted by a functionalised multi-walled carbon nanotube (MWCNT) support compared with the Vulcan XC-72 support for a nanoparticulate Pt catalyst. The negative effect produced in the hydrogen oxidation reaction (HOR) by the presence of a Pt contaminated with high CO coverage was analysed. This investigation was conducted using a rotating disk electrode (RDE) and a single cell with membrane electrode assemblies (MEAs) with loads of 0.3 mg Pt/cm2 for the anode and 0.6 mg Pt/cm2 for the cathode at various poisoning times. To this end, polarisation curves were performed, and electrochemical impedance spectroscopy (EIS) measurements were analysed. In addition, the recovery of the poisoning/de-poisoning process was studied. The –OH groups anchored to the MWCNT support exert a protective effect on the Pt nanoparticles, making the catalyst more efficient in a PEMFC fed with H2 + CO.  相似文献   

11.
Platinum (Pt) is considered as the most efficient catalyst for hydrogen evolution reaction (HER) with a nearly zero overpotential, but it is limited by the high cost and poor stability. Herein, we report an efficient electrocatalyst of Pt–Ni alloy nanoparticles (NPs) supported on the La-modified flexible carbon nanocomposite fibers (PtNi@La-CNFs) for HER. The rare earth metal oxide in the catalyst has a structure-effect relationship with the carbon fibers to form a flexible fiber membrane. Experimental results show that the macroscopic and microscopic properties of carbon nanocomposite fibers can be optimized by doping La2O3, and the Pt–Ni NPs can be anchored effectively. The Pt1Ni1@La-CNFs electrocatalyst exhibits a small overpotential of 32 mV to achieve current density of 10 mA cm?2 with a low Tafel slope of 51 mV dec?1 in alkaline medium, outperforming that of Pt@La-CNFs and the commercial Pt/C catalyst. This study reveals that the multiple coupling effect of rare earth compound, precious metal, and transition metal in composite catalyst can tailor its the electronic configuration, and results in an enhanced HER performance. This work opens up a novel approach to design high active and low cost Pt-based HER catalysts.  相似文献   

12.
Transition metal nitrides are interesting electrocatalytic support materials that have similar structure to their carbide counterparts while avoiding associated issues with carbonaceous overlayers resulting from carbide synthesis. This may allow for more intimate contact between the nitride substrate and metal-modifier to promote synergistic effects. In this work, tungsten nitride (WN) and niobium nitride (NbN) thin films were synthesized and evaluated for their stability across a wide range of potential-pH values. Low loadings of Pt were deposited on the nitride thin films and were evaluated for the hydrogen evolution reaction (HER) activity in acid and alkaline electrolytes. The observed activity trends correlate well with the hydrogen binding energies obtained from density functional theory (DFT) calculations. Pseudo-Pourbaix diagrams were generated for WN and NbN to aid in catalyst selection for other electrocatalytic reactions.  相似文献   

13.
Reasonable design and synthesis of hetero atom metal coordination compounds on the atomic scale can significantly improve the performance of the catalysts. Herein, Pt/C (20%) is doped and inserted into the CoSSeNi catalyst through two steps of hydrothermal reaction and high temperature calcination process. Compared with the single metal Pt/C doped CoSSe–Pt/C, the bimetal doped CoSSeNi–Pt/C can greatly enhance the hydrogen evolution reaction (HER) activity. The optimized Pt content in CoSSeNi–Pt/C is 2.25 wt%, which achieves the optimal HER and OER activity. The OER and HER overpotentials of CoSSeNi–Pt/C-0.3 nanosheets at 10 mA cm?2 only required 295 mV and 180 mV, respectively. During the accelerated durability test, in the presence of Pt/C dopants, CoSSeNi–Pt/C catalyst exhibited excellent long-time durability in alkaline media. Meanwhile, CoSSeNi–Pt/C showed much higher DOS near the Fermi level and the higher electron density near the Fermi level would facilitate the adsorption of adsorbates.  相似文献   

14.
15.
Catalytic performance of MoN, WN and WC on hydrogen evolution reaction (HER)were investigated by first-principles calculations, especially considering the effect of strain. From the calculation we can see the catalytic ability has an opposite trend with the adsorption capacity. H coverage was found to affect WN catalytic activity obviously, however has no effect on MoN and WC. Comparing with the experiments, we inferred that although the top site has the strongest potential catalytic ability, the actual catalytic site for HER is hollow1 site. Some specific transition metal doping (Ni > Fe > Mn > W for MoN, Fe > Co for WN, Ni > Co > Fe> Mn for WC) may indirectly improve the HER catalytic performance. It is worth noting that applying a certain strain (e.g. 2.5% tensile strain for MoN, 5% compressive strain for WN, WC) is helpful for improving the HER catalytic performance. Our work is instructive for HER catalyst development in terms of doping and strain.  相似文献   

16.
A systematic method for obtaining a novel electrode structure based on PtCoMn ternary alloy catalyst supported on graphitic carbon nanofibers (CNF) for hydrogen evolution reaction (HER) in acidic media is proposed. Ternary alloy nanoparticles (Co0.6Mn0.4 Pt), with a mean crystallite diameter under 10 nm, were electrodeposited onto a graphitic support material using a two-step pulsed deposition technique. Initially, a surface functionalisation of the carbon nanofibers is performed with the aid of oxygen plasma. Subsequently, a short galvanostatic pulse electrodeposition technique is applied. It has been demonstrated that, if pulsing current is employed, compositionally controlled PtCoMn catalysts can be achieved. Variations of metal concentration ratios in the electrolyte and main deposition parameters, such as current density and pulse shape, led to electrodes with relevant catalytic activity towards HER. The samples were further characterised using several physico-chemical methods to reveal their morphology, structure, chemical and electrochemical properties. X-ray diffraction confirms the PtCoMn alloy formation on the graphitic support and energy dispersive X-ray spectroscopy highlights the presence of the three metallic components from the alloy structure. The preliminary tests regarding the electrocatalytic activity of the developed electrodes display promising results compared to commercial Pt/C catalysts. The PtCoMn/CNF electrode exhibits a decrease in hydrogen evolution overpotential of about 250 mV at 40 mA cm−2 in acidic solution (0.5 M H2SO4) when compared to similar platinum based electrodes (Pt/CNF) and a Tafel slope of around 120 mV dec−1, indicating that HER takes place under the Volmer-Heyrovsky mechanism.  相似文献   

17.
The catalytical activity for the hydrogen evolution reaction (HER) of the electrodeposited Ni–Mo/WC composites is examined in 1 M KOH solution. The structure, surface morphology and surface composition is investigated using the scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The electrocatalytic properties for the HER is evaluated based on the cathodic polarization, electrochemical impedance, cyclic voltammetry and chronopotentiometry methods. The obtained results prove the superior catalytic activity for the HER of Ni–Mo/WC composites to Ni–Mo alloy. The catalytic activity of Ni–Mo/WC electrodes is determined by the presence of WC nanoparticles and Mo content in the metallic matrix. The best electrocatalytic properties are identified for Ni–Mo/WC composite with the highest Mo content and the most oxidized surface among the studied coatings. The impedance results reveal that the observed improvement in the catalytic activity is the consequence of high real surface area and high intrinsic catalytic activity of the composite.  相似文献   

18.
Two-dimensional (2D) electrocatalyst plays an important role in hydrogen production via water splitting. In this work, the first-principles calculation was used to investigate the hydrogen evolution reaction (HER) performance of transition metal (TM) single atom catalysts (SACs) on 2D SnO nanosheets. Among the TM considered (TM = V, Cr, Mn, Fe, Co, Ni, Cu and Pt), V, Fe, Co, Ni, Cu and Pt can effectively improve the catalytic activity of SnO. More importantly, the low-cost Co can exhibit promising HER performance with the Gibbs free energy as low as ~0.015 eV, which is competitive with the precious catalyst Pt. The theoretical exchange current densities of Co SACs can reach ~10−16 A/site. The exciting HER activity is mainly facilitated through the d-d hybridization between the TM and Sn atoms on the SnO surface, which introduces new electron states near the Fermi level. Our work highlights the complexity and diversity of the effect of TM SACs on SnO nanosheets and implies their potential applications as efficient HER electrocatalysts.  相似文献   

19.
The effect of carbon monoxide (CO) on the reduction of Pt ion to metallic Pt is studied. The modified GC electrode with platinum metal synthesized in the presence of CO shows excellent activity for hydrogen evolution reaction (HER). Despite the decrease in the loading of platinum (4.5 × 10−4 mg cm−2) a substantial increase in its electrocatalytic activity towards HER is observed in a sulfuric acid environment. The observed electrocatalytic activity is comparable to available commercial catalysts like Pt/C. Tafel slope was obtained to be 34 mV.dec−1, and the overpotential was acquired to be 31 mV at the mass activity of 10 mA mg−1 were observed which was very close to kinetic parameters of Pt/C catalyst.  相似文献   

20.
Active and low-cost hydrogen evolution reaction (HER) electrocatalysts are needed to minimize capital costs associated with large-scale hydrogen production from water electrolysis. Catalysts based on monolayer (ML) amounts of precious metals supported on carbides are a promising concept for this purpose. In the current study Pd supported on tungsten carbide (WC) and molybdenum carbide (Mo2C) were evaluated for HER activity. Carbide foils were synthesized using temperature programmed reaction of W or Mo in a CH4/H2 atmosphere. Physical vapor deposition was used to deposit Pd on WC or Mo2C while X-ray Photoelectron Spectroscopy (XPS) was used to determine the Pd surface coverage. Linear sweep voltammetry and chronopotentiometry were used to evaluate the HER activity and electrochemical stability of the catalysts, demonstrating the possibility of using ML Pd on either WC or Mo2C as active, stable and lower-cost HER catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号