首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel 2D/2D heterojunction (CuTHQ/NG) has been prepared by in situ growth of the 2D CuTHQ MOF on defective N-doped graphene (NG), and its photocatalytic activity for overall water splitting studied in detail. CuTHQ/NG heterojunction has demonstrated better photocatalytic activity (480 μmol/g) than the individual components (257 and 65 μmol/g for CuTHQ and NG, respectively) for H2 evolution. Furthermore, unlike the individual components, the as-prepared 2D/2D CuTHQ/NG heterojunction promotes overall water splitting under simulated sunlight (164 μmol of H2/g and 80 μmol of O2/g). We have also studied the photo-induced charge separation and recombination reactions. Photocurrent measurements and emission quenching experiments have confirmed improved charge separation in the CuTHQ/NG heterojunction. Moreover, the charge recombination kinetics have been investigated with transient absorption spectroscopy. Electron/hole recombination in the heterojunction has been determined more than one order of magnitude slower (8.9 μs) than the mechanical mixture of CuTHQ and NG (0.35 μs). Finally, the photochemical stability of the 2D/2D heterojunction has been investigated performing a long-term (96 h) experiment, demonstrating near linear H2 evolution along the irradiation time.  相似文献   

2.
A series of graphene/CaIn2O4 composites were synthesized using a facile solvothermal method to improve the photocatalytic performance of CaIn2O4. The reduction of graphene oxide to graphene and the deposition of CaIn2O4 nanoparticles on the graphene sheets can be achieved simultaneously during the solvothermal process. The photocatalytic activities of as-prepared graphene/CaIn2O4 composites for hydrogen evolution from CH3OH/H2O solution were investigated under visible light irradiation. It was found that graphene exhibited an obvious influence on the photocatalytic activity of CaIn2O4. The graphene/CaIn2O4 composite reached a high H2 evolution rate of 62.5 μmol h−1 from CH3OH/H2O solution when the content of graphene was 1 wt%. Furthermore, the 1 wt% graphene/CaIn2O4 composite did not show deactivation for H2 evolution for longer than 32 h. This work could provide a new insight into the fabrication of visible light driven photocatalysts with efficient and stable performance.  相似文献   

3.
Nanocomposites of BiPO4 and reduced graphene oxide (BiPO4/RGO) synthesized by hydrothermal method, hydrazine reduction, and UV-assisted photoreduction method were studied as photocatalysts for hydrogen evolution from ethanol aqueous solution under irradiation. The incorporation of RGO into BiPO4 significantly enhanced the photocatalytic activity for H2 evolution, and the photocatalytic activity increases in the order of BiPO4/RGO-hydrothermal > BiPO4/RGO-photoreduction > BiPO4/RGO-hydrazine. The optimum proportion of GO is 2 wt% for all the samples prepared by different methods. The rate of H2 production calculated for BiPO4/RGO-hydrothermal (with 2 wt% GO) nanocomposite was about 306 μmol/h/g, which was almost 2 times as high as that for bare BiPO4. The XRD, Raman and XPS characterization suggested that the original GO was successfully reduced to RGO. The more intimate contact between BiPO4 and RGO, the higher photocurrent responses and the higher reduction degree of RGO was consistent with the higher photocatalytic performance.  相似文献   

4.
TiO2-pillared titanoniobate TiO2/HTiNbO5 as an efficient photocatalyst was prepared via an exfoliation–restacking route. The as-prepared nanohybrid is mesoporous with a high specific surface area of 171 m2/g and a gallery height of 1.55 nm. Under a 300 W Xe lamp irradiation, the nanohybrid exhibited a high photocatalytic activity of 219 μmol/h/(g cat) in splitting water into hydrogen, which is 12 times as high as its parent HTiNbO5 (18 μmol/h/g) and 24 times as TiO2 (9 μmol/h/g). Enlarged surface area and effective electronic coupling between the host and the guest components contribute to the high photocatalytic activity of TiO2/HTiNbO5. Its photocatalytic activity was further improved through platinizing, and 5 wt% Pt-loaded TiO2/HTiNbO5 gave a remarkable hydrogen evolution rate of 4735 μmol/h/g. A photoexcitation model of the semiconductor–semiconductor pillared photocatalyst was proposed based on the results of XPS and UV–vis.  相似文献   

5.
A new series visible-light driven photocatalysts (CuIn)xCd2(1x)S2 was successfully synthesized by a simple and facile, low-temperature hydrothermal method. The synthesized materials were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) surface area measurement, X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectroscopy (UV–Vis DRS). The results show that the morphology of the photocatalysts changes with the increase of x from 0.01 to 0.3 and their band gap can be correspondingly tuned from 2.37 eV to 2.30 eV. The (CuIn)xCd2(1−x)S2 nanocomposite show highly photocatalytic activities for H2 evolution from aqueous solutions containing sacrificial reagents, SO32− and S2− under visible light. Substantially, (CuIn)0.05Cd1.9S2 with the band gap of 2.36 eV exhibits the highest photocatalytic activity even without a Pt cocatalyst (649.9 μmol/(g h)). Theoretical calculations about electronic property of the (CuIn)xCd2(1−x)S2 indicate that Cu 3d and In 5s5p states should be responsible for the photocatalytic activity. Moreover, the deposition of Pt on the doping sample results in a substantial improvement in H2 evolution than the Pt-loaded pure CdS and the amount of H2 produced (2456 μmol/(g h)) in the Pt-loaded doping system is much higher than that of the latter (40.2 μmol/(g h)). The (CuIn)0.05Cd1.9S2 nanocomposite can keep the activity for a long time due to its stability in the photocatalytic process. Therefore, the doping of CuInS2 not only facilitates the photocatalytic activity of CdS for H2 evolution, but also improves its stability in photocatalytic process.  相似文献   

6.
Novel photocatalysts, protonated layered perovskite oxides H-ABi2Ta2O9 (A = Ca, Sr, Ba, K0.5La0.5) for overall water splitting were synthesized by ion exchange with acid treating. The characterization by XRD, HRTEM indicated that all of ABi2Ta2O9 (A = Ca, Sr, Ba, K0.5La0.5) were able to form new single-phase protonated layered oxides. The measurement of photocatalytic activity showed every protonated layered oxide could overall split water into H2 and O2, although the ratios of H2 and O2 are unstoichiometric. The sequence of photocatalytic H2 production is HCBT(107.0 μmol/h) < HBBT(119.5 μmol/h) < HSBT(162.7 μmol/h) < HKLBT(189.3 μmol/h). The difference of ionic radius of cations in interlayer influenced the band gaps, and resulted in the distinction of photocatalytic activity. Pt loading enhanced apparently the photocatalytic activity. Among all of photocatalysts in this study, 0.1 wt%Pt/HSBT showed the highest photocatalytic activity for H2 evolution, reaching 491 μmol/h.  相似文献   

7.
The main objective of this study was to prepare effective photocatalysts for splitting of seawater for solar fuel – H2 and degradation of seawater organic pollutants such as dyes. To enhance photocatalytic activities, CuO is supported on nano TiO2 (CuO/nano TiO2). By X-ray absorption near edge structure (XANES) spectroscopy, CuO clusters are found on nano TiO2. The 2.5% CuO/nano TiO2 has greater activities in photocatalytic splitting of water and seawater than nano TiO2 by 9.9 and 7.8 times, respectively. Interestingly, the 2.5% CuO/nano TiO2 is also very active for photocatalytic splitting of water and seawater contaminated with dyes such as methylene blue (MB) (10 ppm). Under a 5-h irradiation of the UV–Vis light, about 99% of MB is degraded while 3.1 μmol/h g cat of H2 are generated from seawater in the photocatalysis process.  相似文献   

8.
CuS/CdS composites have been successfully prepared by a simple hydrothermal and cation exchange method. Even without noble-metal cocatalyst, the prepared CuS/CdS composites exhibited enhanced photocatalytic H2 evolution activity. CuS content had a great influence on photocatalytic activity and an optimum amount of CuS was determined to be ca. 3 mol%, at which the CuS/CdS displayed the highest photocatalytic activity, giving an H2 evolution rate of 332 μmol g−1 h−1, exceeding that of pure CdS by 3.5 times. The results of SPV (surface photovoltage) and SPC (surface photocurrent) revealed that photogenerated electrons were captured by CuS loaded. TPV (transient photovoltage techniques) indicated that photogenerated charges lifetime in CdS, was prolonged with CuS loaded. Those are the main reasons for the improvement of photocatalytic H2 evolution.  相似文献   

9.
Visible-light-driven CdS/HKLBT photocatalyst was prepared by ion exchange of Cd2+ in aqueous Cd(CH3COO)2 solutions, then by sulfurization in aqueous N2H8S solutions. The characterization by XRD, SEM, HRTEM and XRS revealed that CdS nanoparticles exist both on the surface and in the interlayer of HKLBT. The composite CdS/HKLBT showed higher photocatalytic activity for hydrogen evolution (504.2 μmol/h) than that of pure CdS (187.3 μmol/h), even than that of 0.5 wt%Pt/CdS (496.0 μmol/h) under visible light (λ > 400 nm) in the presence of lactic acid as sacrificial reagent. The enhancement of photocatalytic activity is attributed to the strong contact between CdS and HKLBT in CdS/HKLBT as well as the effective separation of photogenerated carrier in CdS through electron rapid injection into CB of HKLBT.  相似文献   

10.
A new organic–inorganic photosensitive coordination compound [RuL(bpy)2](PF6)2 (to represent by TM1) had been synthesized by reaction of L (L = 2-hydroxyl-5-(imidazo-[4,5-f]-1,10-phenanthrolin) benzoic acid) with bipyridyl ruthenium, and further characterized by UV–vis, IR, NMR MS and CV. The target photocatalyst 6 wt% TM1-0.5 wt% Pt-TiO2 () was obtained by sensitization of Pt-loaded TiO2 with TM1. The H2 production activity of target photocatalyst was systematically evaluated by the reaction of photocatalytic H2 production from water under visible light irradiation. The maximum H2 evolution of 386.7 μmol in irradiation 3 h and H2 production rate of 2578 μmol · h−1 · g−1 was detected under the optimal conditions with pH 5, target photocatalyst 50 mg and 5% sacrificial reagent TEOA (v/v).  相似文献   

11.
This work reports a green and facile approach to synthesize chemically bonded TiO2/graphene sheets (GS) nanocomposites using a one-step hydrothermal method. The as-prepared composites were characterized by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and ultraviolet visible (UV-Vis) diffuse reflectance spectra. The photocatalytic activity was evaluated by hydrogen evolution from water splitting under UV-Vis light illumination. An enhancement of photocatalytic hydrogen evolution was observed over the TiO2/GS composite photocatalysts, as 1.6 times larger for TiO2/2.0 wt%GS than that of Degussa P25. This fabrication process features the reduction of graphene oxide and formation of TiO2 simultaneously leading to the well dispersion of generated TiO2 nanoparticles on the surface of GS.  相似文献   

12.
Metal oxides with ferroelectric properties are considered to be a new family of efficient photocatalysts. Here, we investigate stibiotantalite type-structure compounds, SbMO4 (M = Nb, Ta), with layered crystal structures, and ferroelectric properties as photocatalysts for hydrogen generation from the splitting of pure water. Both compounds were prepared by a conventional solid-state reaction method, and their optical properties, electronic band structure, and photocatalytic water splitting performance were characterized and evaluated. Diffuse reflectance analysis showed that both compounds have moderate band gaps of 3.7 eV for SbTaO4 and 3.1 eV for SbNbO4 (cf. 3.0 eV for TiO2). Mott–Schottky analysis reveals that their conduction-band edge potentials are higher than the water reduction (hydrogen evolution) potential (0 V vs. RHE), indicating both compounds can generate hydrogen from water splitting. The photocatalytic water splitting performance was conducted by using pure water and UV-light irradiation, and photocatalytic H2 production was confirmed for both compounds. After loading RuO2 cocatalyst, the rates of hydrogen evolution of SbNbO4 and SbTaO4 were 24 μmol/g h and 58 μmol/g h, respectively. It was concluded that both compounds can be used as photocatalysts for water splitting under UV irradiation. The photocatalytic activity difference in both compounds was discussed with regard to electronic band structure and dipole moment difference, resulting from their crystal structures.  相似文献   

13.
A series of SnS2/ZnIn2S4 (x-SS/ZIS) photocatalysts with different mass ratios of SnS2 were prepared by a hydrothermal method. The resulted composites were used for photocatalytic hydrogen evolution under visible light excitation. All the SS/ZIS composites exhibited significantly enhanced photocatalytic activity for H2 evolution. Obviously, the highest H2 evolution rate of 769 μmol g?1 h?1 was observed over 2.5-SS/ZIS, which was approximately 10.5 times that of the ZnIn2S4 (73 μmol g?1 h?1). The enhanced photocatalytic performance was attributed to the successful construction of SnS2/ZnIn2S4 heterojunctions, leading to rapid charge separation and fast transfer of the photo-generated electrons and holes under light irradiation. On the basis of PL, electrochemical impedance spectroscopy (EIS), photocurrent measurements and the H2 evolution tests, a plausible photocatalytic mechanism was proposed.  相似文献   

14.
In this work, high efficient non-noble metal cobalt cocatalysts implanted on the surface of graphene (G) by one-step photoreduction and in-situ chemical deposition methods for hydrogen evolution were reported. XRD and TEM characterizations showed that the Co and CoSx nanoparticles were deposited on the graphene surface as Co/G and CoSx/G composites. CoSx/G and Co/G nanohybrids exhibited high photocatalytic activities for hydrogen evolution sensitized by Eosin Y (EY). The amounts of H2 evolution reached 708.5 and 675.5 μmol over the EY-sensitized CoSx/G and Co/G nanohybrids irradiated under visible light with wavelength longer than 420 nm in 3 h respectively. The apparent quantum efficiency (AQE) of 8.71% over EY-Co/G was accomplished under 520 nm illumination. The fluorescence results indicated that the lifetime of excited electron was remarkably increased. Graphene might promote the photogenerated electrons transfer from excited dye to the hydrogen evolution active sites such as Co or CoSx, and consequently enhance photocatalytic hydrogen evolution efficiency.  相似文献   

15.
A series of Au/TiO2 photocatalysts was synthesized via the light assistance through the photo-deposition for H2 production by photocatalytic water splitting using ethanol as the hole scavenger. Effect of solution pH in the range of 3.2–10.0 on the morphology and photocatalytic activity for H2 production of the obtained Au/TiO2 photocatalysts was explored. It was found that all Au/TiO2 photocatalysts prepared in different solution pH exhibited comparable anatase fraction (~0.84–0.85) and crystallite size of TiO2 (21–22 nm), but showed different quantity of deposited Au nanoparticles (NPs) and other properties, particularly the particle size of the Au NPs. Among all prepared Au/TiO2 photocatalysts, the Au/TiO2 (10.0) photocatalyst exhibited the highest photocatalytic activity for H2 production, owning to its high metallic state and small size of Au NPs. Via this photocatalyst, the maximum H2 production of 296 μmol (~360 μmol/g?h) was gained at 240 min using the 30 vol% ethanol as the hole scavenger at the photocatalyst loading of 1.33 g/L under the UV light intensity of 0.24 mW/cm2 with the quantum efficiency of 61.2% at 254 nm. The loss of the photocatalytic activity of around 20% was observed after the 5th use.  相似文献   

16.
A new approach to prepare hierarchical and fibrous meso-macroporous N-doped TiO2 is attempted at room temperature without using templates by the addition of titanium isopropoxide droplets to the ammonia solution. The catalysts are thoroughly characterized by physico-chemical and spectroscopic method to explore the structural, electronic and optical properties. The photocatalytic activities of the catalyst were evaluated with hydrogen generation. NTP catalyst calcined at 400 °C (NTP-400) exhibited 602.7 μmol/3 h H2 generation from 10 vol.% methanol under visible light. The excellent photocatalytic activity for NTP-400 is attributed to the porous networks existing in our system with uniform N dispersion throughout the catalyst. The hierarchical and fibrous structures allow easy channelization of electron as in the case of nanotubes for effective surface charge transfer. Along with macroporosity, nitrogen incorporation and mesoporosity play some important roles for enhanced photoactivities.  相似文献   

17.
A highly efficient and visible-light-responsive CuO/TiO2-GR photocatalyst had been synthesized by a two-step process. The as-prepared CuO/TiO2-GR composites were characterized by X-ray diffraction, N2-physisorption, transmission electron microscope, X-ray photoelectron spectroscopy, Raman spectra, UV–vis diffuse reflectance spectra and Photoluminescence spectra. The results indicated that a chemical bond formed between GR and TiO2 in CuO/TiO2-GR composites. CuO/TiO2-GR composites had a higher photocatalytic activity for hydrogen production due to a synergistic effect between CuO and GR. The synergistic effect could efficiently suppress charge recombination, improve interfacial charge transfer, enhance visible-light adsorption and provide plentiful phtotocatalytic reaction active sites. The maximum hydrogen evolution rate of CuO/TiO2-GR-0.5 was 2905.60 μmol/(h·g), which was 20.20 times larger than pure P25.  相似文献   

18.
Photocatalysts CuS/TiO2 for hydrogen production were synthesized by hydrothermal method at high temperature and characterized by XRD, UV–visible DRS, XPS, EDX, SEM and TEM. When TiO2 was loaded with CuS, it showed photocatalytic activities for water decomposition to hydrogen in methanol aqueous solution under 500 W Xe lamp. Among the photocatalysts with various compositions, the one with 1 wt% CuS-loaded TiO2 showed the maximum photocatalytic activity for water splitting, which indicated CuS could improve the separation ratio of photoexcited electrons and holes. What's more, the amounts of the produced hydrogen was about 570 μmol h−1, which had exceeded pure titania (P25) 32 times. In the present paper, it is proven that CuS can act as an effective co-catalyst to enhance the photocatalytic H2 production activity of TiO2.  相似文献   

19.
A robust NiS2/polyvinylpyrrolidone/(CuIn)0·2Zn1·6S2 (NiS2/PVP/CIZS) photocatalyst was successfully synthesized through a sequential hydrothermal treatment. Firstly, the addition of PVP reduces the size of CIZS nanoparticles, resulting in appearing surface effect, and hence an improvement of chemical activity. Moreover, the small size of PVP/CIZS possesses a shorten transfer distance of photo-induced carriers. The photocatalytic H2 evolution rate of 0.8 g PVP/CIZS elevates to 3112.7 μmol/g/h under visible light. After coupling with NiS2, the light absorption range and separation efficiency of photo-induced carriers for NiS2/PVP/CIZS composites have been elevated and the optimal photocatalytic hydrogen evolution rate of 15% NiS2/PVP/CIZS reaches up to 5369.4 μmol/g/h. There forms a type Ⅱ heterostructure on NiS2/PVP/CIZS, and the heterostructure facilitates to suppress the recombination and elevate the separation of photo generated electrons and holes. Therefore, the synergistic effect of size control and constructing a type Ⅱ heterostructure with NiS2 on PVP/CIZS floriform photocatalyst helps to enhance photocatalytic performance of the composites. This work opens up a new way to prepare highly efficient photocatalysts under visible light.  相似文献   

20.
A series of reduced graphene oxide/TiO2 (RGO/TiO2) nanowire microsphere composites were synthesized with a facile one-step hydrothermal method using TiCl3 and graphene oxide (GO) as the starting materials, during which the formation of TiO2 and the reduction of GO occur simultaneously. The obtained nanocomposites were characterized with X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and ultraviolet–visible (UV–vis) diffuse reflectance spectroscopy, respectively. UV–vis absorption spectra showed that the absorption edges of TiO2 were extended into visible light region with the addition of RGO. The photocatalytic activities of the samples with and without Pt as cocatalysts were evaluated by hydrogen evolution from water photo-splitting under UV–vis light illumination. Enhanced photocatalytic properties were observed for the as-prepared RGO/TiO2 nanocomposites. The amount of hydrogen evolution from the optimized photocatalyst reached to 43.8 μmol h−1, which was about 1.6 times as high as that of bare TiO2. The results shown here indicate a convenient and applicable approach to further exploitation of high activity materials for photocatalytic water splitting applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号