首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of potassium promoted Ru/meso-macroporous SiO2 catalysts were prepared and used for the preferential oxidation of CO (CO-PROX) in H2-rich gases. The catalysts were characterized by using techniques of TEM, SEM TPR, XPS, and N2 adsorption/desorption. The catalytic activity of Ru/meso-macroporous SiO2 was markedly improved by the introduction of potassium. The catalyst of K-5 wt.% Ru/meso-macroporous SiO2 with molar ratio of K:Ru = 5:7 exhibited relatively high activity and selectivity for CO-PROX. Nanoparticles of ruthenium species can be highly dispersed on the meso-macroporous SiO2 support by the simple impregnation method. The addition of potassium weakened the interaction between metallic Ru and the silica support. Lowering the reduction temperature of ruthenium ions could keep ruthenium in the state of metallic Ru, and it was proposed that potassium acted as an electron donating agent. The electron donating effect of potassium improved the low temperature activity for CO oxidation and increased the selectivity of O2 for CO oxidation, thus K-modified Ru/meso-macroporous SiO2 catalyst showed obviously a wide temperature window for CO elimination from H2-rich gases, meanwhile the related mechanism was discussed.  相似文献   

2.
Na+-intercalated carbon nanotubes (Na-CNTs) were obtained by impregnation of CNTs with sodium acetate followed by annealing at high temperatures under argon. Stable Na-CNTs-supported Pt catalysts (Pt/Na-CNT catalysts) were then prepared for hydrogen purification via preferential CO oxidation in a H2-rich stream (CO-PROX). Characteristic studies show that the content of Na+ species in CNTs is increased with increased annealing temperature and the Pt nanoparticles with an average size of 2–3 nm are uniformly dispersed on the surfaces of Na-CNTs. An optimized Pt/Na-CNT catalyst with 5 wt% Pt loading can completely remove CO from 40 °C to 200 °C. This catalyst also exhibits long-term stability for 1000 h at 100 °C in feed gas containing 1% CO, 1% O2, 50% H2, 15% CO2, and 10% H2O balanced with N2. The electron transfer between the Pt nanoparticles and Na+ species plays an important role in enhancing the CO-PROX performance of the catalyst.  相似文献   

3.
Two kinds of Ru/C catalysts prepared by two different methods and supported on two graphitized carbons differing in their surface area were studied in CO methanation in the H2-rich gas. The textural parameters of the support materials were characterized by means of N2 physisorption. XRPD, XPS, TEM and CO- chemisorption studies indicate that the application of wet impregnation leads to more homogeneous composition of the Ru/carbon system and higher Ru dispersion than dry impregnation for both supports. The activity of the Ru/carbon samples in CO methanation in a H2-rich gas stream depends on the structure and average size of the active phase crystallites. The combination of wet impregnation and the use of graphitized carbon of appropriate structure in the preparation of the Ru/C catalyst lead to a complete conversion of CO at 240 °C.  相似文献   

4.
In this work, highly dispersed Ru nanoparticles which had a uniform small nanoparticle size were supported on K-promoted meso–macroporous SiO2 by using the simple impregnation method. The effect of the size of Ru nanoparticle on the catalytic performance for the preferential oxidation of CO (CO-PROX) in H2-rich gases was investigated. Meanwhile, the related mechanism on size effect was discussed. The catalysts were characterized by using techniques of transmission electron microscopy, temperature-programmed reduction and CO-chemisorption. The results indicate that the K-promoted Ru/SiO2 catalyst with the size of metal Ru particles at about 7 nm showed obviously higher turnover frequency (TOF) than that of K-Ru/SiO2 with smaller size of Ru particles of around 2 nm. As for oxidizing CO to CO2 on specific weight of ruthenium, the catalyst with the smaller size of metal Ru exhibited better performance owing to its much higher specific surface area of metal Ru. The catalyst with the smaller size of Ru nanoparticles showed much better methanation formation resistance for CO and CO2. The K-promoted and highly dispersed Ru on SiO2 exhibited excellent activity and selectivity for the CO-PROX reaction.  相似文献   

5.
A series of carbon nano-tubes supported platinum-nickel catalysts were prepared and used for CO preferential oxidation in H2-rich streams. The catalysts were characterized by using N2-adsorption, XRD, HRTEM, H2-TPD and H2-TPR techniques. Effects of platinum and nickel loading amount, CO2 and H2O in the feed stream on the activity and selectivity over the catalysts were investigated. The results of catalytic performance tests show that the carbon nano-tubes supported Pt-Ni catalysts are very active and highly selective at low temperature for CO preferential oxidation in 1 vol. % CO, 1 vol. %O2, 50 vol. % H2 and N2 gases. Adding 12.5 vol. % of CO2 into the feed gases has slight negative influence on CO conversion. Adding 15 vol. % of H2O leads to a little decrease of CO conversion at the temperature range of 100-120 °C, which is proposed to be caused by capillary wetting of water in the micro-pores of carbon nano-tubes. As the reaction temperature is higher, adding water can improve CO conversion. The characterization results indicate that platinum species are in nano-particles uniformly dispersed on the carbon nano-tubes surface. There are two kinds of nickel species, one is interacted with platinum and likely to form Pt-Ni alloy in reduction process, the other is much highly dispersed on carbon nano-tubes and strongly interacted with the supports. The high activity of the catalysts is attributed to the interaction between Pt and Ni with the formation of Pt-Ni alloy.  相似文献   

6.
《Journal of power sources》2006,156(2):260-266
The effects of magnesium on platinum catalyst used for the preferential oxidation of carbon monoxide for polymer electrolyte membrane fuel cell applications are investigated. The CO conversion and selectivity on Pt–Mg/Al2O3 for a H2-rich stream are 93.1 and 62.0%, respectively, but only 70.2 and 46.89% on Pt/Al2O3. The superior activity of Pt–Mg/Al2O3 for the preferential oxidation of CO is due to an increase in the hydroxyl groups that results from an increase in basicity with the addition of Mg, as well as to an increase in the electron density on the surface of the Pt catalyst. Moreover, the content of hydroxyl groups on the Pt catalysts is promoted by water vapour.  相似文献   

7.
A series of xMnCu/Ce catalysts with constant low Cu loading of 1 wt% were prepared by the simple impregnation method. The obtained catalysts were characterized by XRD, BET, H2-TPR and XPS, and the preferential oxidation of CO was evaluated in CO2/H2-rich atmospheres. It was shown that partial Mn and Cu could be incorporated into the Ceria lattice, forming surface ternary Cu–Mn–Ce oxide solid solutions. At Mn/Cu = 0.6, the catalyst presented strong interaction among Cu, Mn and Ce, had more Ce3+ and Mn4+ at the surface and showed the best catalytic performance, making CO conversion increase of 23.57% at 90 °C as compared with the Cu/Ce catalyst. For CO-Prox, the highest CO conversion was 94.7% with an oxidation selectivity of 78.9% at 125 °C. At this temperature, the catalyst revealed stable catalytic performance for a total TOS of 205 h. In addition, with CO/Ar as feed gas, CO conversion was 100%, confirming the negative effects of CO2/H2.  相似文献   

8.
In this study, effects of Au and CuO loadings in Au/CuO–ZnO nanocatalysts for preferential oxidation of carbon monoxide in H2-rich streams (PROX) are investigated. CuO–ZnO supports were synthesized by a co-precipitation method. Au was also incorporated into the catalysts by a deposition-precipitation procedure. The catalysts were characterized by XRD, BET surface area, FESEM, HRTEM, H2-TPR, FTIR, and CO-TPD. 2–10 nm Au nanoparticles are dispersed on CuO–ZnO support and significantly enhance the reducibility of CuO. The Au/CuO–ZnO catalysts containing low amount of CuO were found to be more active for PROX compared to the Au/ZnO catalyst. Moreover, as more CuO is added to Au/ZnO, the CO2 selectivity increases in the whole PROX temperature range. The catalyst containing 2 wt% Au and 1 wt% CuO on ZnO exhibited the highest activity and selectivity in the operating temperature range of PEM fuel cells. The activity of this catalyst also remained almost intact during 900 min of PROX time on stream at 80 °C.  相似文献   

9.
The catalytic oxidation of CO over Au/TiO2 in an H2-rich stream was performed under UV irradiation. It is found that UV irradiation over Au/TiO2 promotes the preferential oxidation of CO in the H2-rich stream. The respective chemisorption of CO, H2 and O2 at Au/TiO2 can be described as a process of forming –OH or H2O species. UV irradiation over Au/TiO2 enhances the chemisorption of CO but suppresses the chemisorption of H2 both at TiO2 and Au surface. It is proposed that the photogenerated electrons from TiO2 will cause the change of the chemisorption of CO, H2 and O2 at Au/TiO2, which promotes the preferential oxidation of CO in an H2-rich stream.  相似文献   

10.
The catalytic steam reforming of the major biomass tar component, toluene, was studied over two commercial Ni-based catalysts and two prepared Ru–Mn-promoted Ni-base catalysts, in the temperatures range 673–1073 K. Generally, the conversion of toluene and the H2 content in the product gas increased with temperature. A H2-rich gas was generated by the steam reforming of toluene, and the CO and CO2 contents in the product gas were reduced by the reverse Boudouard reaction. A naphtha-reforming catalyst (46-5Q) exhibited better performance in the steam reforming of toluene at temperatures over 873 K than a methane-reforming catalyst (Reformax 330). Ni/Ru–Mn/Al2O3 catalysts showed high toluene reforming performance at temperatures over 873 K. The results indicate that the observed high stability and coking resistance may be attributed to the promotional effects of Mn on the Ni/Ru–Mn/Al2O3 catalyst.  相似文献   

11.
We synthesized a CuO/CeO2 catalyst using a copper ions encapsulated ceria metal-organic framework (MOF) Ce-UiO-66 as the precursor. The CuO/CeO2 catalysts derived by calcining the MOF precursor (the x-CuCe catalysts) showed the better activity and selectivity for the preferential CO oxidation in the H2-rich stream than the CuO/CeO2 catalyst prepared by wetness impregnation (CuCe-im). A temperature window to match the CO conversion and O2 to CO2 selectivity higher than 99.5% at the same time appeared using the x-CuCe catalysts as the catalyst. Raman and XPS results indicated that more oxygen vacancies were formed in the bulk of ceria in the x-CuCe catalysts than that in the CuCe-im catalyst, which could promote the mobility of oxygen. Our results indicated that the surface lattice oxygen and the oxygen vacancies in the bulk of ceria could enhance the catalytic performance of the CuO/CeO2 catalysts.  相似文献   

12.
CuO supported on CeO2, Ce0.8Zr0.2O2 and Ce0.8Al0.2O2 based catalysts (6%wt Cu) were synthesized and tested in the preferential oxidation of CO in a H2-rich stream (CO-PROX). Nanocrystalline supports, CeO2 and solid solutions of modified CeO2 with zirconium and aluminum were prepared by a freeze-drying method. CuO was supported by incipient wetness impregnation and calcination at 400 °C. All catalysts exhibit high activity in the CO-PROX reaction and selectivity to CO2 at low reaction temperature, being the catalyst supported on CeO2 the more active and stable. The influence of the presence of CO2 and H2O was also studied.  相似文献   

13.
A series of Au catalysts supported on CeO2–TiO2 with various CeO2 contents were prepared. CeO2–TiO2 was prepared by incipient-wetness impregnation with aqueous solution of Ce(NO3)3 on TiO2. Gold catalysts were prepared by deposition–precipitation method at pH 7 and 65 °C. The catalysts were characterized by XRD, TEM and XPS. The preferential oxidation of CO in hydrogen stream was carried out in a fixed bed reactor. The catalyst mainly had metallic gold species and small amount of oxidic Au species. The average gold particle size was 2.5 nm. Adding suitable amount of CeO2 on Au/TiO2 catalyst could enhance CO oxidation and suppress H2 oxidation at high reaction temperature (>50 °C). Additives such as La2O3, Co3O4 and CuO were added to Au/CeO2–TiO2 catalyst and tested for the preferential oxidation of CO in hydrogen stream. The addition of CuO on Au/CeO2–TiO2 catalyst increased the CO conversion and CO selectivity effectively. Au/CuO–CeO2–TiO2 with molar ratio of Cu:Ce:Ti = 0.5:1:9 demonstrated very high CO conversion when the temperature was higher than 65 °C and the CO selectivity also improved substantially. Thus the additive CuO along with the promoter and amorphous oxide ceria and titania not only enhances the electronic interaction, but also stabilizes the nanosize gold particles and thereby enhancing the catalytic activity for PROX reaction to a greater extent.  相似文献   

14.
Micro-reactors for the preferential oxidation of CO in H2-rich stream (CO-PROX) are attractive for PEMFCs employed in portable electronic devices and automobiles, but the jolt is inevitable, which makes micro-reactors necessitate high jolt resistance. The monolithic structured catalyst could effectively resolve these problems. Herein, we employed the thin-felt monolithic Al-fiber substrate to fabricate the CuO–CeO2/AlOOH/Al-fiber catalyst for the CO-PROX reaction. This catalyst was prepared via first growing AlOOH nanosheets onto the Al-fiber surface by steam oxidation method, followed by depositing CuO–CeO2 onto the AlOOH/Al-fiber support. The preferred catalyst delivered 100% CO conversion and 81% O2 selectivity at 140 °C with a gas hourly space velocity of 12,000 mL g?1 h?1, and particularly, performed stably for 120 h at the changeable temperatures of 120–160 °C. This work provides a strategy to tailor a qualified monolithic catalyst that couples the promising jolt resistance and catalytic performance at 120–160 °C.  相似文献   

15.
The catalytic effects of CO preferential oxidation and methanation catalysts for deep CO removal under different operating conditions (temperature, space velocity, water content, etc.) are systematically studied from the aspects of CO content, CO selectivity, and hydrogen loss index. Results indicate that the 3 wt% Ru/Al2O3 preferential oxidation catalysts reduce CO content to below 10 ppm with a high hydrogen consumption of 11.6–15.7%. And methanation catalysts with 0.7 wt% Ru/Al2O3 also exhibit excellent CO removal performance at 220–240 °C without hydrogen loss. Besides, NiClx/CeO2 methanation catalysts possess the characteristics of high space velocity, high activity, and high water-gas resistance, and can maintain the CO content at close to 20 ppm. Based on these experimental results, the coupling scheme of combining NiClx/CeO2 methanation catalysts (low cost and high reaction space velocity) with 0.7 wt% Ru/Al2O3 methanation catalysts (high activity) to reduce CO content to below10 ppm is proposed.  相似文献   

16.
In this article, CuO–ZnO–Al2O3 catalysts with various copper contents were synthesized by a co-precipitation method and employed for the elimination of carbon monoxide from a mixture of 97% H2, 1% CO and 2% O2 at atmospheric pressure via carbon monoxide preferential oxidation (CO-PROX). The influence of the copper and zinc contents on the physicochemical characteristics and catalytic performance was investigated. The prepared samples were characterized using the N2 adsorption-desorption (BET), X-ray diffraction (XRD), transmission and scanning electron microscopy (TEM and SEM) and temperature programmed reduction (TPR) techniques. The increment in CuO loading improved the activity of CuO–ZnO–Al2O3 catalysts for CO oxidation reaction. Among the prepared catalysts, the 50%CuO-3% ZnO-47% Al2O3 catalyst calcined at 400 °C with a BET area of 82.3 m2/g exhibited the best activity with a CO conversion of 88.9% at 125 °C. The effects of the presence of CO2 and H2O in the reaction feed stream and gas hourly space velocity (GHSV) were also studied.  相似文献   

17.
The purposes of this study were to prepare a copper catalyst by the microwave-heated polyol (MP) process and subsequently to evaluate the feasibility of the preferential oxidation of CO (CO-PROX) in excess H2. A CeO2-TD support was firstly prepared by the thermal decomposition from Ce(NO3)3·6H2O precursor. For comparison, commercial ceria (CeO2-C) and activated carbon (AC) selected as support materials. Experimental results of CO-PROX indicated that the highest catalytic activity is achieved when the Cu/CeO2-TD used as catalysts. Correlating to the characteristic results, it is found that the CeO2-TD support prepared by the thermal decomposition has a large surface area and high mesoporosity; these properties contribute to the easy adsorption of pollutants and the effective dispersion of metal particles. Further investigation of feed composition found that Cu/CeO2-TD catalysts possess 100% CO conversion even existence of CO2 and H2O in H2-rich streams at 150 °C. Besides, a decrease in CO conversion was clearly observed above 175 °C for Cu/CeO2-TD catalysts due to the reverse water gas shift reaction tending to reform CO from CO2 and H2.  相似文献   

18.
CO selective methanation (CO-SMET) is as an ideal H2-rich gases purification measurement for proton exchange membrane fuel cell system. Herein, the graphene aerogel-mixed metal oxide (GA-MMO) supported Ru–Ni bimetallic catalysts are exploited for CO-SMET in H2-rich gases. The results reveal that a three-dimensional network structure GA-MMO aerogel with higher specific surface area, better thermal stability and more defects or structural disorders is formed when MMO:GO mass ratio is in the range of 1–4. After loading of Ru, more NiO are reduced to metallic Ni by hydrogen spillover effect, and thus obviously enhances the reactivity. The GA-MMO supported Ru–Ni catalyst exhibits more excellent metal dispersion, reducibility, stronger CO adsorption and activation than the MMO supported Ru–Ni catalyst, thereby resulting in better catalytic performance and stability. This work offers new insights into the construction of highly active catalyst for the efficient generation of high-quality H2 from H2-rich gases.  相似文献   

19.
Two series of Ru/C catalysts doped with lanthanum ions are prepared and studied in CO methanation in the H2-rich gas. The samples are characterized by N2 physisorption, TG-MS studies, XRD, XPS, TEM/STEM and CO chemisorption. Two graphitized carbons differing in surface area (115 and 80.6 m2/g) are used as supports. The average sizes of ruthenium crystallites deposited on their surfaces are 4.33 and 5.95 nm, respectively. The addition of the proper amount of La to the Ru/carbon catalysts leads to an above 20% increase in the catalytic activity along with stable CH4 selectivity higher than 99% at all temperatures. Simultaneously, lanthanum acts as the inhibitor of methanation of the carbon support under conditions of high temperature and hydrogen atmosphere. Such positive effects are achieved at a very low concentration of La in the prepared samples, a maximum 0.04 La/Ru (molar ratio). 0.01 mmol La introduced to the Ru/C system leads to 98% CO conversion at 270 °C.  相似文献   

20.
A set of highly dispersed copper ceria catalysts were synthesized by using the CeMOF precursor featured rich nitrogen-containing ligand. Owing to the existence of coordination interactions between metal ions and nitrogen atoms, the copper ions could be adsorbed into the pore of Ce-MOF and stabilized by the ordered nitrogen atom on the pore wall. After calcinations, the generated CuO/CeO2 catalyst featured more well-dispersed active sites, which was evidenced by varieties of characterizations such as FT-IR, UV-vis spectroscopy, PXRD, TEM, H2-TPR, Raman spectroscopy and XPS. The as-synthesized CuO/CeO2 catalysts displayed outstanding catalytic activities and stabilities for preferential carbon monoxide oxidation in H2-rich stream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号